These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9022752)

  • 1. Covalent inhibition of digestive lipases: an in vitro study.
    Gargouri Y; Ransac S; Verger R
    Biochim Biophys Acta; 1997 Jan; 1344(1):6-37. PubMed ID: 9022752
    [No Abstract]   [Full Text] [Related]  

  • 2. Covalent inactivation of lipases.
    Ransac S; Gargouri Y; Marguet F; Buono G; Beglinger C; Hildebrand P; Lengsfeld H; Hadváry P; Verger R
    Methods Enzymol; 1997; 286():190-231. PubMed ID: 9309652
    [No Abstract]   [Full Text] [Related]  

  • 3. Covalent inhibition of digestive lipases by chiral phosphonates.
    Cavalier JF; Buono G; Verger R
    Acc Chem Res; 2000 Sep; 33(9):579-89. PubMed ID: 10995195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of human gastric and pancreatic lipases by chiral alkylphosphonates. A kinetic study with 1,2-didecanoyl-sn-glycerol monolayer.
    Cavalier JF; Ransac S; Verger R; Buono G
    Chem Phys Lipids; 1999 Jul; 100(1-2):3-31. PubMed ID: 10640192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pancreatic lipases and their complexes with colipases and inhibitors: crystallization and crystal packing.
    Cambillau C; Bourne Y; Egloff MP; Martinez C; van Tilbeurgh H
    Methods Enzymol; 1997; 284():107-19. PubMed ID: 9379929
    [No Abstract]   [Full Text] [Related]  

  • 6. On the inhibition of microbial lipases by tetrahydrolipstatin.
    Haalck L; Spener F
    Methods Enzymol; 1997; 286():252-63. PubMed ID: 9309654
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis of 2-Oxo amide triacylglycerol analogues and study of their inhibition effect on pancreatic and gastric lipases.
    Kokotos G; Verger R; Chiou A
    Chemistry; 2000 Nov; 6(22):4211-7. PubMed ID: 11128286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study.
    Miled N; Roussel A; Bussetta C; Berti-Dupuis L; Rivière M; Buono G; Verger R; Cambillau C; Canaan S
    Biochemistry; 2003 Oct; 42(40):11587-93. PubMed ID: 14529268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supported inhibitor for fishing lipases in complex biological media and mass spectrometry identification.
    Delorme V; Raux B; Puppo R; Leclaire J; Cavalier JF; Marc S; Kamarajugadda PK; Buono G; Fotiadu F; Canaan S; Carrière F
    Biochimie; 2014 Dec; 107 Pt A():124-34. PubMed ID: 25064360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel trifluoromethyl ketones as potent gastric lipase inhibitors.
    Kokotos G; Kotsovolou S; Verger R
    Chembiochem; 2003 Jan; 4(1):90-5. PubMed ID: 12512081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors.
    Sridhar SN; Ginson G; Venkataramana Reddy PO; Tantak MP; Kumar D; Paul AT
    Bioorg Med Chem; 2017 Jan; 25(2):609-620. PubMed ID: 27908755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the inhibitory potential of five squaric acid derivatives against pancreatic lipase.
    Bobcheva Z; Zhiryakova D; Guncheva M
    J Enzyme Inhib Med Chem; 2011 Aug; 26(4):587-91. PubMed ID: 21438711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the discriminative inhibition of mammalian digestive lipases by 3-phenyl substituted 1,3,4-oxadiazol-2(3H)-ones.
    Point V; Pavan Kumar KV; Marc S; Delorme V; Parsiegla G; Amara S; Carrière F; Buono G; Fotiadu F; Canaan S; Leclaire J; Cavalier JF
    Eur J Med Chem; 2012 Dec; 58():452-63. PubMed ID: 23153815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of lipases by phosphonates.
    Björkling F; Dahl A; Patkar S; Zundel M
    Bioorg Med Chem; 1994 Jul; 2(7):697-705. PubMed ID: 7858978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors.
    S N C S; Bhurta D; Kantiwal D; George G; Monga V; Paul AT
    Bioorg Med Chem Lett; 2017 Aug; 27(16):3749-3754. PubMed ID: 28705641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
    Potthoff AP; Haalck L; Spener F
    Biochim Biophys Acta; 1998 Jan; 1389(2):123-31. PubMed ID: 9461253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas.
    Kawaguchi K; Mizuno T; Aida K; Uchino K
    Biosci Biotechnol Biochem; 1997 Jan; 61(1):102-4. PubMed ID: 9028038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of pancreatic and gastric lipases by THL and C12:0-TNB: a kinetic study with emulsified tributyrin.
    Gargouri Y; Chahinian H; Moreau H; Ransac S; Verger R
    Biochim Biophys Acta; 1991 Oct; 1085(3):322-8. PubMed ID: 1911866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin.
    Hadváry P; Lengsfeld H; Wolfer H
    Biochem J; 1988 Dec; 256(2):357-61. PubMed ID: 3223916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiallergy Drugs as Potent Inhibitors of Lipase with Structure-activity Relationships and Molecular Docking.
    Khedidja B; Madjda B; Abderrahmane G
    Antiinflamm Antiallergy Agents Med Chem; 2018; 17(2):95-101. PubMed ID: 30198443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.