BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9022959)

  • 1. Surface characterization of poly(alpha-hydroxy acid) microspheres prepared by a solvent evaporation/extraction process.
    Boury F; Marchais H; Benoit JP; Proust JE
    Biomaterials; 1997 Jan; 18(2):125-36. PubMed ID: 9022959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.
    Meese TM; Hu Y; Nowak RW; Marra KG
    J Biomater Sci Polym Ed; 2002; 13(2):141-51. PubMed ID: 12022746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle size and loading efficiency of poly(D,L-lactic-co-glycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods.
    Iwata M; Nakamura Y; McGinity JW
    J Microencapsul; 1999; 16(1):49-58. PubMed ID: 9972502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study.
    Vandervoort J; Ludwig A
    Int J Pharm; 2002 May; 238(1-2):77-92. PubMed ID: 11996812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery.
    Wang N; Wu XS; Li JK
    Pharm Res; 1999 Sep; 16(9):1430-5. PubMed ID: 10496661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.
    Yang YY; Chia HH; Chung TS
    J Control Release; 2000 Oct; 69(1):81-96. PubMed ID: 11018548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres.
    Jiang G; Thanoo BC; DeLuca PP
    Pharm Dev Technol; 2002 Nov; 7(4):391-9. PubMed ID: 12503521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of multi-phase microspheres of poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) containing a W/O emulsion by a multiple emulsion solvent evaporation technique.
    Iwata M; McGinity JW
    J Microencapsul; 1992; 9(2):201-14. PubMed ID: 1593404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake.
    Sahoo SK; Panyam J; Prabha S; Labhasetwar V
    J Control Release; 2002 Jul; 82(1):105-14. PubMed ID: 12106981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improvement of double emulsion technique for preparing bovine serum albumin-loaded PLGA microspheres.
    Zhang JX; Zhu KJ
    J Microencapsul; 2004 Nov; 21(7):775-85. PubMed ID: 15799227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size.
    Shiga K; Muramatsu N; Kondo T
    J Pharm Pharmacol; 1996 Sep; 48(9):891-5. PubMed ID: 8910847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems.
    Igartua M; Hernández RM; Esquisabel A; Gascon AR; Calvo MB; Pedraz JL
    J Microencapsul; 1997; 14(3):349-56. PubMed ID: 9147284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC.
    Passerini N; Craig DQ
    J Control Release; 2001 May; 73(1):111-5. PubMed ID: 11337064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.
    Yang YY; Chung TS; Ng NP
    Biomaterials; 2001 Feb; 22(3):231-41. PubMed ID: 11197498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation.
    Carrasquillo KG; Carro JC; Alejandro A; Toro DD; Griebenow K
    J Pharm Pharmacol; 2001 Jan; 53(1):115-20. PubMed ID: 11206185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis.
    Kang F; Singh J
    Int J Pharm; 2003 Jul; 260(1):149-56. PubMed ID: 12818819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein encapsulation in biodegradable amphiphilic microspheres.
    Bouillot P; Ubrich N; Sommer F; Duc TM; Loeffler JP; Dellacherie E
    Int J Pharm; 1999 Apr; 181(2):159-72. PubMed ID: 10370212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface properties at biodegradable microsphere surfaces: effects on plasma protein adsorption and phagocytosis.
    Lacasse FX; Filion MC; Phillips NC; Escher E; McMullen JN; Hildgen P
    Pharm Res; 1998 Feb; 15(2):312-7. PubMed ID: 9523320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of solvent/non-solvent ratio on microsphere formation using the solvent removal method.
    Godbee J; Scott E; Pattamunuch P; Chen S; Mathiowitz E
    J Microencapsul; 2004 Mar; 21(2):151-60. PubMed ID: 15198427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical effect of freezing/freeze-drying on sustained release of FITC-dextran encapsulated within PLGA microspheres.
    Kim TH; Park TG
    Int J Pharm; 2004 Mar; 271(1-2):207-14. PubMed ID: 15129987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.