These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 9023219)
1. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. Schirmer F; Ehrt S; Hillen W J Bacteriol; 1997 Feb; 179(4):1329-36. PubMed ID: 9023219 [TBL] [Abstract][Full Text] [Related]
2. Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Ehrt S; Schirmer F; Hillen W Mol Microbiol; 1995 Oct; 18(1):13-20. PubMed ID: 8596453 [TBL] [Abstract][Full Text] [Related]
3. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
4. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
5. Novel regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR in Acinetobacter calcoaceticus. Yu H; Peng Z; Zhan Y; Wang J; Yan Y; Chen M; Lu W; Ping S; Zhang W; Zhao Z; Li S; Takeo M; Lin M PLoS One; 2011 Mar; 6(3):e17350. PubMed ID: 21455294 [TBL] [Abstract][Full Text] [Related]
6. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. Shingler V; Moore T J Bacteriol; 1994 Mar; 176(6):1555-60. PubMed ID: 8132448 [TBL] [Abstract][Full Text] [Related]
7. The Acinetobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3' CatA-encoding segment than of the 5' phenolhydroxylase-encoding portion. Schirmer F; Hillen W Mol Gen Genet; 1998 Feb; 257(3):330-7. PubMed ID: 9520267 [TBL] [Abstract][Full Text] [Related]
8. Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in Acinetobacter calcoaceticus PHEA-2. Xu Y; Chen M; Zhang W; Lin M Curr Microbiol; 2003 Apr; 46(4):235-40. PubMed ID: 12732969 [TBL] [Abstract][Full Text] [Related]
9. Genetic evidence for interdomain regulation of the phenol-responsive final sigma54-dependent activator DmpR. Ng LC; O'Neill E; Shingler V J Biol Chem; 1996 Jul; 271(29):17281-6. PubMed ID: 8663326 [TBL] [Abstract][Full Text] [Related]
10. RpoN (sigma 54) is required for conversion of phenol to catechol in Acinetobacter calcoaceticus. Ehrt S; Ornston LN; Hillen W J Bacteriol; 1994 Jun; 176(12):3493-9. PubMed ID: 8206826 [TBL] [Abstract][Full Text] [Related]
11. Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible sigma54-dependent promoter. Peng Z; Yan Y; Xu Y; Takeo M; Yu H; Zhao Z; Zhan Y; Zhang W; Lin M; Chen M Biotechnol Lett; 2010 Sep; 32(9):1265-70. PubMed ID: 20533077 [TBL] [Abstract][Full Text] [Related]
12. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator. Ray S; Gunzburg MJ; Wilce M; Panjikar S; Anand R ACS Chem Biol; 2016 Aug; 11(8):2357-65. PubMed ID: 27362503 [TBL] [Abstract][Full Text] [Related]
14. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. Ray S; Banerjee A J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616 [TBL] [Abstract][Full Text] [Related]
15. Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. Fernández S; Shingler V; De Lorenzo V J Bacteriol; 1994 Aug; 176(16):5052-8. PubMed ID: 8051017 [TBL] [Abstract][Full Text] [Related]
16. Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. Byrne AM; Olsen RH J Bacteriol; 1996 Nov; 178(21):6327-37. PubMed ID: 8892837 [TBL] [Abstract][Full Text] [Related]
17. An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. Pavel H; Forsman M; Shingler V J Bacteriol; 1994 Dec; 176(24):7550-7. PubMed ID: 8002579 [TBL] [Abstract][Full Text] [Related]
18. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
19. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. Jaspers MC; Suske WA; Schmid A; Goslings DA; Kohler HP; van der Meer JR J Bacteriol; 2000 Jan; 182(2):405-17. PubMed ID: 10629187 [TBL] [Abstract][Full Text] [Related]
20. Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. Skärfstad E; O'Neill E; Garmendia J; Shingler V J Bacteriol; 2000 Jun; 182(11):3008-16. PubMed ID: 10809676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]