These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 9023345)

  • 1. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure.
    Maniotis AJ; Chen CS; Ingber DE
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):849-54. PubMed ID: 9023345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis.
    Ingber DE; Prusty D; Sun Z; Betensky H; Wang N
    J Biomech; 1995 Dec; 28(12):1471-84. PubMed ID: 8666587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotransduction across the cell surface and through the cytoskeleton.
    Wang N; Butler JP; Ingber DE
    Science; 1993 May; 260(5111):1124-7. PubMed ID: 7684161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical interactions among cytoskeletal filaments.
    Wang N
    Hypertension; 1998 Jul; 32(1):162-5. PubMed ID: 9674654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the cytoskeleton in adhesion stabilization of human colorectal carcinoma cells to extracellular matrix components under dynamic conditions of laminar flow.
    Haier J; Nicolson GL
    Clin Exp Metastasis; 1999; 17(8):713-21. PubMed ID: 10919716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape.
    Sims JR; Karp S; Ingber DE
    J Cell Sci; 1992 Dec; 103 ( Pt 4)():1215-22. PubMed ID: 1487498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension.
    Wang N; Ingber DE
    Biophys J; 1994 Jun; 66(6):2181-9. PubMed ID: 8075352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal dynamics in rabbit synovial fibroblasts: II. Reformation of stress fibers in cells rounded by treatment with collagenase-inducing agents.
    Aggeler J
    Cell Motil Cytoskeleton; 1990; 16(2):121-32. PubMed ID: 2165440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells.
    Flusberg DA; Numaguchi Y; Ingber DE
    Mol Biol Cell; 2001 Oct; 12(10):3087-94. PubMed ID: 11598193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress.
    Malek AM; Izumo S
    J Cell Sci; 1996 Apr; 109 ( Pt 4)():713-26. PubMed ID: 8718663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix.
    Mooney DJ; Langer R; Ingber DE
    J Cell Sci; 1995 Jun; 108 ( Pt 6)():2311-20. PubMed ID: 7673351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal effects of acrylamide and 2,5-hexanedione: selective aggregation of vimentin filaments.
    Sager PR
    Toxicol Appl Pharmacol; 1989 Jan; 97(1):141-55. PubMed ID: 2464860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: role of integrin expression and cytoskeletal components.
    Haier J; Nasralla M; Nicolson GL
    Br J Cancer; 1999 Aug; 80(12):1867-74. PubMed ID: 10471033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the NG2 proteoglycan with the actin cytoskeleton.
    Lin XH; Dahlin-Huppe K; Stallcup WB
    J Cell Biochem; 1996 Dec; 63(4):463-77. PubMed ID: 8978462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate Stiffness Mediates Formation of Novel Cytoskeletal Structures in Fibroblasts during Cell-Microspheres Interaction.
    Adamczyk O; Baster Z; Szczypior M; Rajfur Z
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial organization and crosstalk of vimentin and actin stress fibers regulate the osteogenic differentiation of human adipose-derived stem cells.
    Fan T; Qu R; Jiang X; Yang Y; Sun B; Huang X; Zhou Z; Ouyang J; Zhong S; Dai J
    FASEB J; 2021 Feb; 35(2):e21175. PubMed ID: 33205555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cytoskeletal perturbation on the sensitivity of Ehrlich ascites tumor cell surface membranes to mechanical trauma.
    Weiss L; Asch BB; Elkin G
    Invasion Metastasis; 1991; 11(2):93-101. PubMed ID: 1717396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry.
    Wang N; Ingber DE
    Biochem Cell Biol; 1995; 73(7-8):327-35. PubMed ID: 8703406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid flow-induced responses in endothelial cells.
    Stamatas GN; McIntire LV
    Biotechnol Prog; 2001; 17(3):383-402. PubMed ID: 11386856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.