These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9023510)

  • 61. Effects of the transition time between muscle-tendon stretch and shortening on mechanical efficiency.
    Henchoz Y; Malatesta D; Gremion G; Belli A
    Eur J Appl Physiol; 2006 Apr; 96(6):665-71. PubMed ID: 16416321
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise.
    Rijkelijkhuizen JM; de Ruiter CJ; Huijing PA; de Haan A
    J Exp Biol; 2005 Jan; 208(Pt 1):55-63. PubMed ID: 15601877
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles.
    Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T
    Front Physiol; 2020; 11():921. PubMed ID: 32848862
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Index of mechanical efficiency in competitive and recreational long distance runners.
    McBride JM; Davis JA; Alley JR; Knorr DP; Goodman CL; Snyder JG; Battista RA
    J Sports Sci; 2015; 33(13):1388-95. PubMed ID: 25528888
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Variation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat (Rattus norvegicus) skeletal muscle.
    James RS; Walter I; Seebacher F
    J Exp Biol; 2011 Nov; 214(Pt 21):3542-8. PubMed ID: 21993782
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Energetics of rat papillary muscle during contractions with sinusoidal length changes.
    Baxi J; Barclay CJ; Gibbs CL
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1545-54. PubMed ID: 10775132
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A dynamic model of the forearm including fatigue.
    Freund J; Takala EP
    J Biomech; 2001 May; 34(5):597-605. PubMed ID: 11311700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of stretch on work and efficiency of frog (Rana pipiens) muscle.
    Trinh M; Syme DA
    J Exp Biol; 2007 Aug; 210(Pt 16):2843-50. PubMed ID: 17690232
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fatigue and heat production in repeated contractions of mouse skeletal muscle.
    Barclay CJ; Arnold PD; Gibbs CL
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):741-52. PubMed ID: 8576863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effects of asymmetric length trajectories on the initial mechanical efficiency of mouse soleus muscles.
    Holt NC; Askew GN
    J Exp Biol; 2012 Jan; 215(Pt 2):324-30. PubMed ID: 22189776
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Developmental differences in dynamic muscle-tendon behaviour: implications for movement efficiency.
    Waugh CM; Korff T; Blazevich AJ
    J Exp Biol; 2017 Apr; 220(Pt 7):1287-1294. PubMed ID: 28108669
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Changes in illusory ankle movements induced by tendon vibrations during the delayed recovery phase of stretch-shortening cycle fatigue: an indirect study of muscle spindle sensitivity modifications.
    Regueme SC; Barthèlemy J; Gauthier GM; Nicol C
    Brain Res; 2007 Dec; 1185():129-35. PubMed ID: 17959158
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanics of human triceps surae muscle in walking, running and jumping.
    Hof AL; Van Zandwijk JP; Bobbert MF
    Acta Physiol Scand; 2002 Jan; 174(1):17-30. PubMed ID: 11851593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Muscle contraction history: modified Hill versus an exponential decay model.
    Ettema GJ; Meijer K
    Biol Cybern; 2000 Dec; 83(6):491-500. PubMed ID: 11130582
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.
    James RS; Wilson RS; Askew GN
    J Appl Physiol (1985); 2004 Feb; 96(2):545-52. PubMed ID: 14506097
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Age-related effects of fatigue and recovery from fatigue in rat medial gastrocnemius muscle.
    de Haan A; Lodder MA; Sargeant AJ
    Q J Exp Physiol; 1989 Sep; 74(5):715-26. PubMed ID: 2594930
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Measurements of tendon length changes during stretch-shortening cycles in rat soleus.
    Fukutani A; Hashizume S; Isaka T
    Sci Rep; 2023 Apr; 13(1):5381. PubMed ID: 37009784
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Similar effects of cooling and fatigue on eccentric and concentric force-velocity relationships in human muscle.
    De Ruiter CJ; De Haan A
    J Appl Physiol (1985); 2001 Jun; 90(6):2109-16. PubMed ID: 11356773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.