These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9023520)

  • 1. Intracellular pH and H+ buffering capacity in guinea-pigs with left ventricular hypertrophy induced by constriction of the thoracic aorta.
    Wallis WR; Wu C; Sheridan DJ; Fry CH
    Exp Physiol; 1997 Jan; 82(1):227-30. PubMed ID: 9023520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced calcium current density in single myocytes isolated from hypertrophied failing guinea pig hearts.
    Ming Z; Nordin C; Siri F; Aronson RS
    J Mol Cell Cardiol; 1994 Sep; 26(9):1133-43. PubMed ID: 7815457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cell-to-cell electrical coupling associated with left ventricular hypertrophy.
    Cooklin M; Wallis WR; Sheridan DJ; Fry CH
    Circ Res; 1997 Jun; 80(6):765-71. PubMed ID: 9168778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH and intrinsic H+ buffering capacity in normal and hypertrophied right ventricle of ferret heart.
    Do E; Ellis D; Noireaud J
    Cardiovasc Res; 1996 May; 31(5):729-38. PubMed ID: 8763402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of intracellular pH transients in single ventricular myocytes and isolated ventricular muscle of guinea-pig.
    Bountra C; Powell T; Vaughan-Jones RD
    J Physiol; 1990 May; 424():343-65. PubMed ID: 2167972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular sodium and contractile function in hypertrophied human and guinea-pig myocardium.
    Gray RP; McIntyre H; Sheridan DS; Fry CH
    Pflugers Arch; 2001 Apr; 442(1):117-23. PubMed ID: 11374058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conduction velocity and gap junction resistance in hypertrophied, hypoxic guinea-pig left ventricular myocardium.
    Cooklin M; Wallis WR; Sheridan DJ; Fry CH
    Exp Physiol; 1998 Nov; 83(6):763-70. PubMed ID: 9782186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte.
    Leem CH; Lagadic-Gossmann D; Vaughan-Jones RD
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):159-80. PubMed ID: 10226157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hypertrophy and heart failure on [Na+]i in pressure-overloaded guinea pig heart.
    Jelicks LA; Siri FM
    Am J Hypertens; 1995 Sep; 8(9):934-43. PubMed ID: 8541010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
    Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF
    J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts.
    Tajima M; Bartunek J; Weinberg EO; Ito N; Lorell BH
    Circulation; 1998 Dec; 98(24):2760-4. PubMed ID: 9851964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.
    Rannou F; Sainte-Beuve C; Oliviero P; Do E; Trouvé P; Charlemagne D
    J Mol Cell Cardiol; 1995 May; 27(5):1225-34. PubMed ID: 7473781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pH regulation in ferret ventricular muscle. The role of Na-H exchange and the influence of metabolic substrates.
    Blatter LA; McGuigan JA
    Circ Res; 1991 Jan; 68(1):150-61. PubMed ID: 1845852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy.
    Ito N; Kagaya Y; Weinberg EO; Barry WH; Lorell BH
    J Clin Invest; 1997 Jan; 99(1):125-35. PubMed ID: 9011566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cell length consequent on depolarization in single left ventricular myocytes from guinea-pigs with pressure-overload left ventricular hypertrophy.
    Ryder KO; Bryant SM; Hart G
    Proc Biol Sci; 1993 Jul; 253(1336):35-42. PubMed ID: 8396776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans.
    Rossi MA
    J Hypertens; 1998 Jul; 16(7):1031-41. PubMed ID: 9794745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological effects accompanying regression of left ventricular hypertrophy.
    Botchway AN; Turner MA; Sheridan DJ; Flores NA; Fry CH
    Cardiovasc Res; 2003 Dec; 60(3):510-7. PubMed ID: 14659796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of angiotensin receptor-1 blockade on electromechanical changes induced by left ventricular hypertrophy and its regression.
    Gray RP; Turner MA; Sheridan DJ; Fry CH
    Cardiovasc Res; 2007 Feb; 73(3):539-48. PubMed ID: 17174288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diminished neuropeptide Y and dopamine beta-hydroxylase immunoreactivity in a guinea pig model of left ventricular hypertrophy.
    Love S; Nyquist-Battie C; DiMaggio DA; Farah JM; Chronwall BM
    Cardiovasc Res; 1993 Mar; 27(3):494-9. PubMed ID: 8490950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of long-standing hypertensive left ventricular hypertrophy on intracellular pH and intracellular electrolytes in rats.
    Oldershaw PJ; Cameron IR
    Int J Cardiol; 1988 Feb; 18(2):143-9. PubMed ID: 2963795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.