These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 9023765)
1. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. Chin ER; Allen DG J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):17-29. PubMed ID: 9023765 [TBL] [Abstract][Full Text] [Related]
2. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. Chin ER; Allen DG J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):831-40. PubMed ID: 9769425 [TBL] [Abstract][Full Text] [Related]
3. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Helander I; Westerblad H; Katz A Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1306-12. PubMed ID: 11997245 [TBL] [Abstract][Full Text] [Related]
4. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. Chin ER; Allen DG J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213 [TBL] [Abstract][Full Text] [Related]
5. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. Kabbara AA; Nguyen LT; Stephenson GM; Allen DG J Muscle Res Cell Motil; 2000; 21(5):481-9. PubMed ID: 11129439 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178 [TBL] [Abstract][Full Text] [Related]
7. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. Nielsen J; Cheng AJ; Ørtenblad N; Westerblad H J Physiol; 2014 May; 592(9):2003-12. PubMed ID: 24591577 [TBL] [Abstract][Full Text] [Related]
8. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle. Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321 [TBL] [Abstract][Full Text] [Related]
9. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle. Allen DG; Lännergren J; Westerblad H J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572 [TBL] [Abstract][Full Text] [Related]
10. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. Balnave CD; Allen DG J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):25-36. PubMed ID: 8568662 [TBL] [Abstract][Full Text] [Related]
11. Role of intracellular calcium and metabolites in low-frequency fatigue of mouse skeletal muscle. Chin ER; Balnave CD; Allen DG Am J Physiol; 1997 Feb; 272(2 Pt 1):C550-9. PubMed ID: 9124298 [TBL] [Abstract][Full Text] [Related]
12. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575 [TBL] [Abstract][Full Text] [Related]
13. Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. Westerblad H; Duty S; Allen DG J Appl Physiol (1985); 1993 Jul; 75(1):382-8. PubMed ID: 8397180 [TBL] [Abstract][Full Text] [Related]
14. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. Moopanar TR; Allen DG J Physiol; 2006 Feb; 571(Pt 1):191-200. PubMed ID: 16339177 [TBL] [Abstract][Full Text] [Related]
15. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Westerblad H; Allen DG Pflugers Arch; 1996 Apr; 431(6):964-70. PubMed ID: 8927516 [TBL] [Abstract][Full Text] [Related]
16. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. Dahlstedt AJ; Katz A; Westerblad H J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199 [TBL] [Abstract][Full Text] [Related]
17. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189 [TBL] [Abstract][Full Text] [Related]
18. The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. Kabbara AA; Allen DG J Physiol; 1999 Aug; 519 Pt 1(Pt 1):169-76. PubMed ID: 10432347 [TBL] [Abstract][Full Text] [Related]
19. Contractile apparatus and sarcoplasmic reticulum function: effects of fatigue, recovery, and elevated Ca2+. Williams JH J Appl Physiol (1985); 1997 Aug; 83(2):444-50. PubMed ID: 9262439 [TBL] [Abstract][Full Text] [Related]
20. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. Cairns SP; Renaud JM J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]