These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9023951)

  • 1. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Yeoman CJ; Fields CJ; Lepercq P; Ruiz P; Forano E; White BA; Mosoni P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33658330
    [No Abstract]   [Full Text] [Related]  

  • 6. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between ruminal cellulolytic bacteria for adhesion to cellulose.
    Mosoni P; Fonty G; Gouet P
    Curr Microbiol; 1997 Jul; 35(1):44-7. PubMed ID: 9175559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens.
    Gokarn RR; Eiteman MA; Martin SA; Eriksson KE
    Appl Biochem Biotechnol; 1997; 68(1-2):69-80. PubMed ID: 9373931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of glucose and cellobiose by 3 strains of Fibrobacter succinogenes].
    Gaudet G; Cheng KJ
    Reprod Nutr Dev; 1990; Suppl 2():201s-202s. PubMed ID: 2206331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens.
    Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85.
    Collings GF; Yokoyama MT
    Appl Environ Microbiol; 1980 Mar; 39(3):566-71. PubMed ID: 7189996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose.
    Ghali I; Sofyan A; Ohmori H; Shinkai T; Mitsumori M
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J; Ben-Ghedalia D; Morrison M
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Miron J
    J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo.
    Wanapat M; Cherdthong A
    Curr Microbiol; 2009 Apr; 58(4):294-9. PubMed ID: 19018588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.