These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 9023951)
41. Degradation of cellulose and forage fiber fractions by ruminal cellulolytic bacteria alone and in coculture with phenolic monomer-degrading bacteria. Varel VH; Jung HG; Krumholz LR J Anim Sci; 1991 Dec; 69(12):4993-5000. PubMed ID: 1667013 [TBL] [Abstract][Full Text] [Related]
42. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Russell JB; Dombrowski DB Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158 [TBL] [Abstract][Full Text] [Related]
43. Molecular beacons: trial of a fluorescence-based solution hybridization technique for ecological studies with ruminal bacteria. Schofield P; Pell AN; Krause DO Appl Environ Microbiol; 1997 Mar; 63(3):1143-7. PubMed ID: 9055429 [TBL] [Abstract][Full Text] [Related]
44. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Seon Park J; Russell JB; Wilson DB Anaerobe; 2007 Apr; 13(2):83-8. PubMed ID: 17292641 [TBL] [Abstract][Full Text] [Related]
45. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85. Fukuma N; Koike S; Kobayashi Y FEMS Microbiol Lett; 2012 Nov; 336(1):17-25. PubMed ID: 22849722 [TBL] [Abstract][Full Text] [Related]
46. Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes. Shinkai T; Ueki T; Kobayashi Y Anim Sci J; 2010 Feb; 81(1):72-9. PubMed ID: 20163675 [TBL] [Abstract][Full Text] [Related]
47. The effect of ammonia treatment on the solubilization of straw and the growth of cellulolytic rumen bacteria. Kolankaya N; Stewart CS; Duncan SH; Cheng KJ; Costerton JW J Appl Bacteriol; 1985 Apr; 58(4):371-9. PubMed ID: 3997690 [TBL] [Abstract][Full Text] [Related]
48. Volatile fatty acid requirements of cellulolytic rumen bacteria. Dehority BA; Scott HW; Kowaluk P J Bacteriol; 1967 Sep; 94(3):537-43. PubMed ID: 6068143 [TBL] [Abstract][Full Text] [Related]
50. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Shinkai T; Kobayashi Y Appl Environ Microbiol; 2007 Mar; 73(5):1646-52. PubMed ID: 17209077 [TBL] [Abstract][Full Text] [Related]
51. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Kudo H; Cheng KJ; Costerton JW Can J Microbiol; 1987 Mar; 33(3):244-8. PubMed ID: 3567744 [TBL] [Abstract][Full Text] [Related]
52. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. Mosoni P; Martin C; Forano E; Morgavi DP J Anim Sci; 2011 Mar; 89(3):783-91. PubMed ID: 21346137 [TBL] [Abstract][Full Text] [Related]
53. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Krause DO; Dalrymple BP; Smith WJ; Mackie RI; McSweeney CS Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1797-1807. PubMed ID: 10439419 [TBL] [Abstract][Full Text] [Related]
54. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Miron J; Ben-Ghedalia D Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378 [TBL] [Abstract][Full Text] [Related]
55. Characterization of rat cecum cellulolytic bacteria. Montgomery L; Macy JM Appl Environ Microbiol; 1982 Dec; 44(6):1435-43. PubMed ID: 7159086 [TBL] [Abstract][Full Text] [Related]
56. News & notes: paper digestion by the cellulolytic ruminal bacterium Fibrobacter succinogenes. Martin SA; Martin JA Curr Microbiol; 1998 Dec; 37(6):431-2. PubMed ID: 9806983 [TBL] [Abstract][Full Text] [Related]
57. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Latham MJ; Brooker BE; Pettipher GL; Harris PJ Appl Environ Microbiol; 1978 Jun; 35(6):1166-73. PubMed ID: 567035 [TBL] [Abstract][Full Text] [Related]
58. Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Fukuma NM; Koike S; Kobayashi Y Arch Microbiol; 2015 Mar; 197(2):269-76. PubMed ID: 25354721 [TBL] [Abstract][Full Text] [Related]
59. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200 [TBL] [Abstract][Full Text] [Related]
60. VITAMIN REQUIREMENTS OF SEVERAL CELLULOLYTIC RUMEN BACTERIA. SCOTT HW; DEHORITY BA J Bacteriol; 1965 May; 89(5):1169-75. PubMed ID: 14292981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]