These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9023951)

  • 61. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria.
    Weimer PJ; French AD; Calamari TA
    Appl Environ Microbiol; 1991 Nov; 57(11):3101-6. PubMed ID: 16348578
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation.
    Sung HG; Kim MJ; Upadhaya SD; Ha JK; Lee SS
    Asian-Australas J Anim Sci; 2013 Sep; 26(9):1276-81. PubMed ID: 25049909
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In vivo 13C NMR study of glucose and cellobiose metabolism by four cellulolytic strains of the genus Fibrobacter.
    Matheron C; Delort AM; Gaudet G; Forano E
    Biodegradation; 1998; 9(6):451-61. PubMed ID: 10335584
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation.
    Varel VH; Jung HJ
    Appl Environ Microbiol; 1986 Aug; 52(2):275-80. PubMed ID: 16347127
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR.
    Koike S; Pan J; Kobayashi Y; Tanaka K
    J Dairy Sci; 2003 Apr; 86(4):1429-35. PubMed ID: 12741567
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of Physicochemical Factors on the Adhesion to Cellulose Avicel of the Ruminal Bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes.
    Roger V; Fonty G; Komisarczuk-Bony S; Gouet P
    Appl Environ Microbiol; 1990 Oct; 56(10):3081-7. PubMed ID: 16348315
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biochanin A improves fibre fermentation by cellulolytic bacteria.
    Harlow BE; Flythe MD; Aiken GE
    J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.
    Lou J; Dawson KA; Strobel HJ
    Curr Microbiol; 1997 Oct; 35(4):221-7. PubMed ID: 9290062
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows.
    Weimer PJ; Waghorn GC; Odt CL; Mertens DR
    J Dairy Sci; 1999 Jan; 82(1):122-34. PubMed ID: 10022014
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls.
    Miron J; Duncan SH; Stewart CS
    J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.
    Zhou YW; McSweeney CS; Wang JK; Liu JX
    Animal; 2012 May; 6(5):815-23. PubMed ID: 22558929
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi.
    Roger V; Fonty G; Andre C; Gouet P
    Curr Microbiol; 1992 Oct; 25(4):197-201. PubMed ID: 1368974
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets.
    Varel VH; Dehority BA
    Appl Environ Microbiol; 1989 Jan; 55(1):148-53. PubMed ID: 2705767
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs.
    Chaucheyras-Durand F; Masséglia S; Fonty G; Forano E
    Appl Environ Microbiol; 2010 Dec; 76(24):7931-7. PubMed ID: 20971877
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents.
    Michalet-Doreau B; Fernandez I; Peyron C; Millet L; Fonty G
    Reprod Nutr Dev; 2001; 41(2):187-94. PubMed ID: 11434522
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1.
    Odenyo AA; Mackie RI; Fahey GC; White BA
    J Anim Sci; 1991 Feb; 69(2):819-26. PubMed ID: 2016208
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improved assay for quantitating adherence of ruminal bacteria to cellulose.
    Rasmussen MA; White BA; Hespell RB
    Appl Environ Microbiol; 1989 Aug; 55(8):2089-91. PubMed ID: 2782879
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85.
    Huang L; Forsberg CW; Thomas DY
    J Bacteriol; 1988 Jul; 170(7):2923-32. PubMed ID: 3384799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.