BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9024620)

  • 21. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early cellular interactions promote embryonic axis formation in Xenopus laevis.
    Gimlich RL; Gerhart JC
    Dev Biol; 1984 Jul; 104(1):117-30. PubMed ID: 6203792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specification of embryonic axis and mosaic development in ascidians.
    Nishida H
    Dev Dyn; 2005 Aug; 233(4):1177-93. PubMed ID: 15973692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage.
    Fujii R; Yamashita S; Hibi M; Hirano T
    J Cell Biol; 2000 Sep; 150(6):1335-48. PubMed ID: 10995439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and expression pattern of mago nashi during zebrafish development.
    Pozzoli O; Gilardelli CN; Sordino P; Doniselli S; Lamia CL; Cotelli F
    Gene Expr Patterns; 2004 Dec; 5(2):265-72. PubMed ID: 15567724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maternal and zygotic control of zebrafish dorsoventral axial patterning.
    Langdon YG; Mullins MC
    Annu Rev Genet; 2011; 45():357-77. PubMed ID: 21942367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning.
    Guger KA; Gumbiner BM
    Dev Biol; 1995 Nov; 172(1):115-25. PubMed ID: 7589792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus.
    Mizuno T; Yamaha E; Yamazaki F
    Dev Genes Evol; 1997 Jan; 206(6):389-396. PubMed ID: 27747400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule array observed in the posterior-vegetal cortex during cytoplasmic and cortical reorganization of the ascidian egg.
    Ishii H; Goto T; Nishikata T
    Dev Growth Differ; 2017 Oct; 59(8):648-656. PubMed ID: 28967684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos.
    Manuel Dominguez J; Paiement J
    Am J Anat; 1989 Sep; 186(1):99-113. PubMed ID: 2782291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The zebrafish epiboly mutants.
    Kane DA; Hammerschmidt M; Mullins MC; Maischein HM; Brand M; van Eeden FJ; Furutani-Seiki M; Granato M; Haffter P; Heisenberg CP; Jiang YJ; Kelsh RN; Odenthal J; Warga RM; Nüsslein-Volhard C
    Development; 1996 Dec; 123():47-55. PubMed ID: 9007228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos.
    Savage RM; Danilchik MV
    Dev Biol; 1993 Jun; 157(2):371-82. PubMed ID: 8500650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo.
    Takesono A; Moger J; Farooq S; Cartwright E; Dawid IB; Wilson SW; Kudoh T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3371-6. PubMed ID: 22331904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation and dynamics of cytoplasmic domains and their genetic regulation during the zebrafish oocyte-to-embryo transition.
    Fuentes R; Mullins MC; Fernández J
    Mech Dev; 2018 Dec; 154():259-269. PubMed ID: 30077623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos.
    Medina A; Wendler SR; Steinbeisser H
    Int J Dev Biol; 1997 Oct; 41(5):741-5. PubMed ID: 9415495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation.
    Wei S; Dai M; Liu Z; Ma Y; Shang H; Cao Y; Wang Q
    Cell Res; 2017 Feb; 27(2):202-225. PubMed ID: 27910850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
    Weitzel HE; Illies MR; Byrum CA; Xu R; Wikramanayake AH; Ettensohn CA
    Development; 2004 Jun; 131(12):2947-56. PubMed ID: 15151983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process.
    Astrow SH; Holton B; Weisblat DA
    Dev Biol; 1989 Oct; 135(2):306-19. PubMed ID: 2776970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.