BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9024620)

  • 41. Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation.
    Marrari Y; Rouvière C; Houliston E
    Dev Biol; 2004 Jul; 271(1):38-48. PubMed ID: 15196948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultraviolet irradiation during ooplasmic segregation prevents gastrulation, sensory cell induction, and axis formation in the ascidian embryo.
    Jeffery WR
    Dev Biol; 1990 Aug; 140(2):388-400. PubMed ID: 2373259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A thrombomodulin-like gene is crucial to the collective migration of epibolic blastomeres during germ layer formation and organogenesis in zebrafish.
    Lee GH; Chang CL; Chiu WT; Hsiao TH; Chen PY; Wang KC; Kuo CH; Chen BH; Shi GY; Wu HL; Fu TF
    J Biomed Sci; 2019 Aug; 26(1):60. PubMed ID: 31451113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo.
    Prodon F; Dru P; Roegiers F; Sardet C
    J Cell Sci; 2005 Jun; 118(Pt 11):2393-404. PubMed ID: 15923652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos.
    Clute P; Masui Y
    Dev Biol; 1995 Oct; 171(2):273-85. PubMed ID: 7556912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The embryonic development of the triclad Schmidtea polychroa.
    Cardona A; Hartenstein V; Romero R
    Dev Genes Evol; 2005 Mar; 215(3):109-31. PubMed ID: 15599763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Further analysis of the effect of ultra-violet irradiation on the formation of the germ line in Xenopus laevis.
    Thomas V; Heasman J; Ford C; Nagajski D; Wylie CC
    J Embryol Exp Morphol; 1983 Aug; 76():67-81. PubMed ID: 6685167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polarity of the ascidian egg cortex before fertilization.
    Sardet C; Speksnijder J; Terasaki M; Chang P
    Development; 1992 May; 115(1):221-37. PubMed ID: 1638982
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.
    Shamipour S; Kardos R; Xue SL; Hof B; Hannezo E; Heisenberg CP
    Cell; 2019 May; 177(6):1463-1479.e18. PubMed ID: 31080065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish.
    Ober EA; Schulte-Merker S
    Dev Biol; 1999 Nov; 215(2):167-81. PubMed ID: 10545228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manipulating and imaging the early Xenopus laevis embryo.
    Danilchik MV
    Methods Mol Biol; 2011; 770():21-54. PubMed ID: 21805260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organization and function of microfilaments during late epiboly in zebrafish embryos.
    Cheng JC; Miller AL; Webb SE
    Dev Dyn; 2004 Oct; 231(2):313-23. PubMed ID: 15366008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two UV-sensitive targets in dorsoanterior specification of frog embryos.
    Elinson RP; Pasceri P
    Development; 1989 Jul; 106(3):511-8. PubMed ID: 2598822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer.
    Erter CE; Solnica-Krezel L; Wright CV
    Dev Biol; 1998 Dec; 204(2):361-72. PubMed ID: 9882476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo.
    Sardet C; Paix A; Prodon F; Dru P; Chenevert J
    Dev Dyn; 2007 Jul; 236(7):1716-31. PubMed ID: 17420986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predictability of dorso-ventral asymmetry in the cleavage stage zebrafish embryo: an analysis using lithium sensitivity as a dorso-ventral marker.
    Aanstad P; Whitaker M
    Mech Dev; 1999 Oct; 88(1):33-41. PubMed ID: 10525186
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microtubule configurations in oocytes, zygotes, and early embryos of a marsupial, Monodelphis domestica.
    Breed WG; Simerly C; Navara CS; VandeBerg JL; Schatten G
    Dev Biol; 1994 Jul; 164(1):230-40. PubMed ID: 8026625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
    Ghiglione C; Lhomond G; Lepage T; Gache C
    EMBO J; 1993 Jan; 12(1):87-96. PubMed ID: 7679074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.