These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9024629)

  • 21. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start.
    Tyers M
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7772-6. PubMed ID: 8755551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Meiosis I is established through division-specific translational control of a cyclin.
    Carlile TM; Amon A
    Cell; 2008 Apr; 133(2):280-91. PubMed ID: 18423199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation.
    Sedgwick C; Rawluk M; Decesare J; Raithatha S; Wohlschlegel J; Semchuk P; Ellison M; Yates J; Stuart D
    Biochem J; 2006 Oct; 399(1):151-60. PubMed ID: 16776651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct activities of the related protein kinases Cdk1 and Ime2.
    Sawarynski KE; Kaplun A; Tzivion G; Brush GS
    Biochim Biophys Acta; 2007 Mar; 1773(3):450-6. PubMed ID: 17137646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities.
    Verma R; Feldman RM; Deshaies RJ
    Mol Biol Cell; 1997 Aug; 8(8):1427-37. PubMed ID: 9285816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle.
    Amon A; Irniger S; Nasmyth K
    Cell; 1994 Jul; 77(7):1037-50. PubMed ID: 8020094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TORC1 coordinates the conversion of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1.
    Moreno-Torres M; Jaquenoud M; Péli-Gulli MP; Nicastro R; De Virgilio C
    Cell Discov; 2017; 3():17012. PubMed ID: 28496991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J; Andrews B
    Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases.
    Calzada A; Sacristán M; Sánchez E; Bueno A
    Nature; 2001 Jul; 412(6844):355-8. PubMed ID: 11460169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.
    Visintin R; Craig K; Hwang ES; Prinz S; Tyers M; Amon A
    Mol Cell; 1998 Dec; 2(6):709-18. PubMed ID: 9885559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CDK Regulation of Meiosis: Lessons from
    MacKenzie AM; Lacefield S
    Genes (Basel); 2020 Jun; 11(7):. PubMed ID: 32610611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. End of the line: proteolytic degradation of cyclin-dependent kinase inhibitors.
    Sheaff RJ; Roberts JM
    Chem Biol; 1996 Nov; 3(11):869-73. PubMed ID: 8939714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex.
    Zachariae W; Schwab M; Nasmyth K; Seufert W
    Science; 1998 Nov; 282(5394):1721-4. PubMed ID: 9831566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cyclin family of budding yeast: abundant use of a good idea.
    Andrews B; Measday V
    Trends Genet; 1998 Feb; 14(2):66-72. PubMed ID: 9520600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How proteolysis drives the cell cycle.
    King RW; Deshaies RJ; Peters JM; Kirschner MW
    Science; 1996 Dec; 274(5293):1652-9. PubMed ID: 8939846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis.
    Schwab M; Lutum AS; Seufert W
    Cell; 1997 Aug; 90(4):683-93. PubMed ID: 9288748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Cell Cycle Progression in the Budding Yeast S. cerevisiae.
    Pirincci Ercan D; Uhlmann F
    Methods Mol Biol; 2021; 2329():265-276. PubMed ID: 34085229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multisite phosphorylation code of CDK.
    Örd M; Möll K; Agerova A; Kivi R; Faustova I; Venta R; Valk E; Loog M
    Nat Struct Mol Biol; 2019 Jul; 26(7):649-658. PubMed ID: 31270471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.
    Barberis M
    Adv Exp Med Biol; 2012; 736():135-67. PubMed ID: 22161326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design principles of the yeast G1/S switch.
    Yang X; Lau KY; Sevim V; Tang C
    PLoS Biol; 2013 Oct; 11(10):e1001673. PubMed ID: 24130459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.