These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9024633)

  • 21. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage.
    Yoshida K; Miki Y
    Cancer Sci; 2010 Apr; 101(4):831-5. PubMed ID: 20132225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth.
    Cadwell C; Zambetti GP
    Gene; 2001 Oct; 277(1-2):15-30. PubMed ID: 11602342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p53 and stem cells: new developments and new concerns.
    Zhao T; Xu Y
    Trends Cell Biol; 2010 Mar; 20(3):170-5. PubMed ID: 20061153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PI3K inhibitors changed the p53-induced response of Saos-2 cells from growth arrest to apoptosis.
    Ren S; Gao C; Zhang L; Koike K; Tsuchida N
    Biochem Biophys Res Commun; 2003 Aug; 308(1):120-5. PubMed ID: 12890489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging.
    Li T; Liu X; Jiang L; Manfredi J; Zha S; Gu W
    Oncotarget; 2016 Mar; 7(11):11838-49. PubMed ID: 26943586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a novel p53 functional domain that is necessary for efficient growth suppression.
    Walker KK; Levine AJ
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15335-40. PubMed ID: 8986812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fas-mediated apoptosis is dependent on wild-type p53 status in human cancer cells expressing a temperature-sensitive p53 mutant alanine-143.
    Li Y; Raffo AJ; Drew L; Mao Y; Tran A; Petrylak DP; Fine RL
    Cancer Res; 2003 Apr; 63(7):1527-33. PubMed ID: 12670900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does p53 affect organismal aging?
    Donehower LA
    J Cell Physiol; 2002 Jul; 192(1):23-33. PubMed ID: 12115733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The p53 family and programmed cell death.
    Pietsch EC; Sykes SM; McMahon SB; Murphy ME
    Oncogene; 2008 Oct; 27(50):6507-21. PubMed ID: 18955976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behind the scenes: unravelling the molecular mechanisms of p53 target gene selectivity (Review).
    Smeenk L; Lohrum M
    Int J Oncol; 2010 Nov; 37(5):1061-70. PubMed ID: 20878053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-translational modification of p53 and the integration of stress signals.
    Meek DW
    Pathol Biol (Paris); 1997 Dec; 45(10):804-14. PubMed ID: 9769944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation.
    Li Y; Qu X; Qu J; Zhang Y; Liu J; Teng Y; Hu X; Hou K; Liu Y
    Cancer Lett; 2009 Nov; 284(2):208-15. PubMed ID: 19457607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational change of p53 protein in growth factor-stimulated human myelogenous leukemia cells.
    Zhang W; Deisseroth AB
    Leuk Lymphoma; 1994 Jul; 14(3-4):251-5. PubMed ID: 7950913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The p53 tumour suppressor gene: a mediator of a G1 growth arrest and of apoptosis.
    Yonish-Rouach E
    Experientia; 1996 Oct; 52(10-11):1001-7. PubMed ID: 8917731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway.
    Rouault JP; Falette N; Guéhenneux F; Guillot C; Rimokh R; Wang Q; Berthet C; Moyret-Lalle C; Savatier P; Pain B; Shaw P; Berger R; Samarut J; Magaud JP; Ozturk M; Samarut C; Puisieux A
    Nat Genet; 1996 Dec; 14(4):482-6. PubMed ID: 8944033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear and mitochondrial apoptotic pathways of p53.
    Moll UM; Zaika A
    FEBS Lett; 2001 Mar; 493(2-3):65-9. PubMed ID: 11286997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis.
    Huang Y; Tan M; Gosink M; Wang KK; Sun Y
    Cancer Res; 2002 May; 62(10):2913-22. PubMed ID: 12019172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells.
    Chen X; Ko LJ; Jayaraman L; Prives C
    Genes Dev; 1996 Oct; 10(19):2438-51. PubMed ID: 8843196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Tumor suppressor gene p53: mechanisms of action in cell proliferation and death].
    Mendoza-Rodríguez CA; Cerbón MA
    Rev Invest Clin; 2001; 53(3):266-73. PubMed ID: 11496714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway.
    Li C; Chen H; Ding F; Zhang Y; Luo A; Wang M; Liu Z
    Biochem J; 2009 Aug; 422(2):363-72. PubMed ID: 19534726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.