These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 9024725)

  • 1. Artificial neural networks improve the accuracy of cancer survival prediction.
    Burke HB; Goodman PH; Rosen DB; Henson DE; Weinstein JN; Harrell FE; Marks JR; Winchester DP; Bostwick DG
    Cancer; 1997 Feb; 79(4):857-62. PubMed ID: 9024725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma.
    Burke HB; Hoang A; Iglehart JD; Marks JR
    Cancer; 1998 Mar; 82(5):874-7. PubMed ID: 9486576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of survival in patients with esophageal carcinoma using artificial neural networks.
    Sato F; Shimada Y; Selaru FM; Shibata D; Maeda M; Watanabe G; Mori Y; Stass SA; Imamura M; Meltzer SJ
    Cancer; 2005 Apr; 103(8):1596-605. PubMed ID: 15751017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions.
    Bottaci L; Drew PJ; Hartley JE; Hadfield MB; Farouk R; Lee PW; Macintyre IM; Duthie GS; Monson JR
    Lancet; 1997 Aug; 350(9076):469-72. PubMed ID: 9274582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients.
    De Laurentiis M; De Placido S; Bianco AR; Clark GM; Ravdin PM
    Clin Cancer Res; 1999 Dec; 5(12):4133-9. PubMed ID: 10632351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which is a more accurate predictor in colorectal survival analysis? Nine data mining algorithms vs. the TNM staging system.
    Gao P; Zhou X; Wang ZN; Song YX; Tong LL; Xu YY; Yue ZY; Xu HM
    PLoS One; 2012; 7(7):e42015. PubMed ID: 22848691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks applied to survival prediction in breast cancer.
    Lundin M; Lundin J; Burke HB; Toikkanen S; Pylkkänen L; Joensuu H
    Oncology; 1999 Nov; 57(4):281-6. PubMed ID: 10575312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural networking model for the prediction of post-hepatectomy survival of patients with early hepatocellular carcinoma.
    Qiao G; Li J; Huang A; Yan Z; Lau WY; Shen F
    J Gastroenterol Hepatol; 2014 Dec; 29(12):2014-20. PubMed ID: 24989634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer.
    Que SJ; Chen QY; Qing-Zhong ; Liu ZY; Wang JB; Lin JX; Lu J; Cao LL; Lin M; Tu RH; Huang ZN; Lin JL; Zheng HL; Li P; Zheng CH; Huang CM; Xie JW
    World J Gastroenterol; 2019 Nov; 25(43):6451-6464. PubMed ID: 31798281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of an artificial neural network to determine prognostic factors in colorectal cancer patients.
    Gohari MR; Biglarian A; Bakhshi E; Pourhoseingholi MA
    Asian Pac J Cancer Prev; 2011; 12(6):1469-72. PubMed ID: 22126483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. American Joint Committee on Cancer prognostic factors consensus conference.
    Yarbro JW; Page DL; Fielding LP; Partridge EE; Murphy GP
    Cancer; 1999 Dec; 86(11):2436-46. PubMed ID: 10590388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel data-driven prognostic model for staging of colorectal cancer.
    Manilich EA; Kiran RP; Radivoyevitch T; Lavery I; Fazio VW; Remzi FH
    J Am Coll Surg; 2011 Nov; 213(5):579-588, 588.e1-2. PubMed ID: 21925905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of survival from carcinoma of oesophagus and oesophago-gastric junction following surgical resection using an artificial neural network.
    Mofidi R; Deans C; Duff MD; de Beaux AC; Paterson Brown S
    Eur J Surg Oncol; 2006 Jun; 32(5):533-9. PubMed ID: 16618533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting post-treatment survivability of patients with breast cancer using Artificial Neural Network methods.
    Wang TN; Cheng CH; Chiu HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1290-3. PubMed ID: 24109931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma.
    Han M; Snow PB; Brandt JM; Partin AW
    Cancer; 2001 Apr; 91(8 Suppl):1661-6. PubMed ID: 11309765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating additional factors into the TNM staging for cutaneous melanoma by machine learning.
    Yang CQ; Wang H; Liu Z; Hueman MT; Bhaskaran A; Henson DE; Sheng L; Chen D
    PLoS One; 2021; 16(9):e0257949. PubMed ID: 34591891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks for cancer research: outcome prediction.
    Burke HB
    Semin Surg Oncol; 1994; 10(1):73-9. PubMed ID: 8115788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consideration of tumor size improves the accuracy of TNM predictions in patients with gastric cancer after curative gastrectomy.
    Lu J; Huang CM; Zheng CH; Li P; Xie JW; Wang JB; Lin JX
    Surg Oncol; 2013 Sep; 22(3):167-71. PubMed ID: 23787074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Overall Survival and Novel Classification of Patients with Gastric Cancer Using the Survival Recurrent Network.
    Oh SE; Seo SW; Choi MG; Sohn TS; Bae JM; Kim S
    Ann Surg Oncol; 2018 May; 25(5):1153-1159. PubMed ID: 29497908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing a modified-AJCC TNM staging system in the New South Wales Cancer Registry, Australia.
    Lawrance S; Bui C; Mahindra V; Arcorace M; Cooke-Yarborough C
    BMC Cancer; 2019 Aug; 19(1):850. PubMed ID: 31462255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.