These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9025273)

  • 1. Characterization of zinc-substituted cytochrome c by circular dichroism and resonance Raman spectroscopic methods.
    Ye S; Shen C; Cotton TM; Kostić NM
    J Inorg Biochem; 1997 Feb; 65(3):219-26. PubMed ID: 9025273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horse heart ferricytochrome c: conformation and heme configuration of low ionic strength acidic forms.
    Myer YP; Saturno AF
    J Protein Chem; 1990 Aug; 9(4):379-87. PubMed ID: 2177335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies.
    Anni H; Vanderkooi JM; Mayne L
    Biochemistry; 1995 May; 34(17):5744-53. PubMed ID: 7727435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH on axial ligand coordination of cytochrome c" from Methylophilus methylotrophus and horse heart cytochrome c.
    Indiani C; de Sanctis G; Neri F; Santos H; Smulevich G; Coletta M
    Biochemistry; 2000 Jul; 39(28):8234-42. PubMed ID: 10889031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horse heart ferricytochrome c: conformation and heme configuration of high ionic strength acidic forms.
    Myer YP; Saturno AF
    J Protein Chem; 1991 Oct; 10(5):481-94. PubMed ID: 1665977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heme c-peptide model system for the resonance Raman study of c-type cytochromes: characterization of the solvent-dependence of peptide-histidine-heme interactions.
    Othman S; Le Lirzin A; Desbois A
    Biochemistry; 1993 Sep; 32(37):9781-91. PubMed ID: 8396971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular dichroism and resonance raman comparative studies of wild type cytochrome c and F82H mutant.
    Zheng J; Ye S; Lu T; Cotton TM; Chumanov G
    Biopolymers; 2000; 57(2):77-84. PubMed ID: 10766958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c.
    Santucci R; Ascoli F
    J Inorg Biochem; 1997 Nov; 68(3):211-4. PubMed ID: 9352653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.
    Lynch SR; Copeland RA
    Protein Sci; 1992 Nov; 1(11):1428-34. PubMed ID: 1338946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pegylation on the structure and function of horse cytochrome c.
    Mabrouk PA
    Bioconjug Chem; 1994; 5(3):236-41. PubMed ID: 7918743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c.
    Vanderkooi JM; Adar F; Erecińska M
    Eur J Biochem; 1976 May; 64(2):381-7. PubMed ID: 179813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifications in heme iron of free and vesicle bound cytochrome c by tert-butyl hydroperoxide: a magnetic circular dichroism and electron paramagnetic resonance investigation.
    Nantes IL; Faljoni-Alário A; Nascimento OR; Bandy B; Gatti R; Bechara EJ
    Free Radic Biol Med; 2000 Mar; 28(5):786-96. PubMed ID: 10754275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c peroxidase complexed with cytochrome c has an unperturbed heme moiety.
    Wang J; Larsen RW; Moench SJ; Satterlee JD; Rousseau DL; Ondrias MR
    Biochemistry; 1996 Jan; 35(2):453-63. PubMed ID: 8555215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy.
    Jordan T; Eads JC; Spiro TG
    Protein Sci; 1995 Apr; 4(4):716-28. PubMed ID: 7613469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman study of multihemic c-type cytochromes from Desulfuromonas acetoxidans.
    Chottard G; Kazanskaya I; Bruschi M
    Eur J Biochem; 2000 Feb; 267(4):1050-8. PubMed ID: 10672013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt-cytochrome c. II. Magnetic resonance spectra and conformational transitions.
    Dickinson LC; Chien JC
    Biochemistry; 1975 Aug; 14(16):3534-42. PubMed ID: 240381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic circular dichroism spectroscopy as a probe of axial heme ligand replacement in semisynthetic mutants of cytochrome c.
    Rux JJ; Dawson JH
    FEBS Lett; 1991 Sep; 290(1-2):49-51. PubMed ID: 1655536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system.
    Santucci R; Fiorucci L; Sinibaldi F; Polizio F; Desideri A; Ascoli F
    Arch Biochem Biophys; 2000 Jul; 379(2):331-6. PubMed ID: 10898952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion concentration modulates the conformation and stability of the molten globule of cytochrome c.
    Sinibaldi F; Howes BD; Smulevich G; Ciaccio C; Coletta M; Santucci R
    J Biol Inorg Chem; 2003 Jul; 8(6):663-70. PubMed ID: 12748881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.