BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 9025940)

  • 1. Maximum entropy, analysis of kinetic processes involving chemical and folding-unfolding changes in proteins.
    Plaza del Pino IM; Parody-Morreale A; Sanchez-Ruiz JM
    Anal Biochem; 1997 Jan; 244(2):239-55. PubMed ID: 9025940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric kinetics of protein structural changes.
    Marchal S; Font J; Ribó M; Vilanova M; Phillips RS; Lange R; Torrent J
    Acc Chem Res; 2009 Jun; 42(6):778-87. PubMed ID: 19378977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
    Kaya H; Chan HS
    J Mol Biol; 2002 Jan; 315(4):899-909. PubMed ID: 11812156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation.
    Lee KH; Xie D; Freire E; Amzel LM
    Proteins; 1994 Sep; 20(1):68-84. PubMed ID: 7824524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen exchange kinetics of proteins in denaturants: a generalized two-process model.
    Qian H; Chan SI
    J Mol Biol; 1999 Feb; 286(2):607-16. PubMed ID: 9973574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lattice protein with an amyloidogenic latent state: stability and folding kinetics.
    Palyanov AY; Krivov SV; Karplus M; Chekmarev SF
    J Phys Chem B; 2007 Mar; 111(10):2675-87. PubMed ID: 17315918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential barriers and an obligatory metastable intermediate define the apparent two-state folding pathway of the ubiquitin-like PB1 domain of NBR1.
    Chen P; Long J; Searle MS
    J Mol Biol; 2008 Mar; 376(5):1463-77. PubMed ID: 18234223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding time distributions as an approach to protein folding kinetics.
    Chekmarev SF; Krivov SV; Karplus M
    J Phys Chem B; 2005 Mar; 109(11):5312-30. PubMed ID: 16863198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L.
    Scalley ML; Yi Q; Gu H; McCormack A; Yates JR; Baker D
    Biochemistry; 1997 Mar; 36(11):3373-82. PubMed ID: 9116017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein folding mechanisms and the multidimensional folding funnel.
    Socci ND; Onuchic JN; Wolynes PG
    Proteins; 1998 Aug; 32(2):136-58. PubMed ID: 9714155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom-by-atom analysis of global downhill protein folding.
    Sadqi M; Fushman D; Muñoz V
    Nature; 2006 Jul; 442(7100):317-21. PubMed ID: 16799571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model.
    Nakamura HK; Sasai M; Takano M
    Proteins; 2004 Apr; 55(1):99-106. PubMed ID: 14997544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The analysis of physicians' work: announcing the end of attempts at in vitro fertilization].
    Santiago-Delefosse M; Cahen F; Coeffin-Driol C
    Encephale; 2003; 29(4 Pt 1):293-305. PubMed ID: 14615699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy.
    Schuler B; Lipman EA; Eaton WA
    Nature; 2002 Oct; 419(6908):743-7. PubMed ID: 12384704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.