These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 9025966)
1. Organic solvent systems for 31P nuclear magnetic resonance analysis of lecithin phospholipids: applications to two-dimensional gradient-enhanced 1H-detected heteronuclear multiple quantum coherence experiments. Bosco M; Culeddu N; Toffanin R; Pollesello P Anal Biochem; 1997 Feb; 245(1):38-47. PubMed ID: 9025966 [TBL] [Abstract][Full Text] [Related]
2. 31P nuclear magnetic resonance analysis of phospholipids in a ternary homogeneous system. Branca M; Culeddu N; Fruianu M; Serra MV Anal Biochem; 1995 Nov; 232(1):1-6. PubMed ID: 8600816 [TBL] [Abstract][Full Text] [Related]
3. A solvent system for the high-resolution proton nuclear magnetic resonance spectroscopy of membrane lipids. Wang Y; Hollingsworth RI Anal Biochem; 1995 Mar; 225(2):242-51. PubMed ID: 7762786 [TBL] [Abstract][Full Text] [Related]
4. Quantitative characterization of phospholipids in milk fat via 31P NMR using a monophasic solvent mixture. Murgia S; Mele S; Monduzzi M Lipids; 2003 May; 38(5):585-91. PubMed ID: 12880117 [TBL] [Abstract][Full Text] [Related]
5. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water. Estrada R; Stolowich N; Yappert MC Anal Biochem; 2008 Sep; 380(1):41-50. PubMed ID: 18534182 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of rhodium(III) complexes with tris/tetrakis-benzimidazoles and benzothiazoles--quick identification of cyclometallation by nuclear magnetic resonance spectroscopy. Chandrashekhar N; Gayathri V; Nanje Gowda NM Magn Reson Chem; 2009 Aug; 47(8):666-73. PubMed ID: 19444858 [TBL] [Abstract][Full Text] [Related]
7. Detection and characterization of intermolecular multiple-quantum coherence NMR signals of IS (I=1/2; S=3/2) spin systems. Zhang W; Chen S; Cai S; Chen Z Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1051-7. PubMed ID: 21216661 [TBL] [Abstract][Full Text] [Related]
8. Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy. Abel CB; Lindon JC; Noble D; Rudd BA; Sidebottom PJ; Nicholson JK Anal Biochem; 1999 Jun; 270(2):220-30. PubMed ID: 10334839 [TBL] [Abstract][Full Text] [Related]
9. Multiparametric optimization of (31)P NMR spectroscopic analysis of phospholipids in crude tissue extracts. 1. Chemical shift and signal separation. Lutz NW; Cozzone PJ Anal Chem; 2010 Jul; 82(13):5433-40. PubMed ID: 20443549 [TBL] [Abstract][Full Text] [Related]
10. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead. Cullinan DB; Hondrogiannis G; Henderson TJ Anal Chem; 2008 Apr; 80(8):3000-6. PubMed ID: 18345646 [TBL] [Abstract][Full Text] [Related]
11. Chemical-shift referencing and resolution stability in methanol:water gradient LC-NMR. Keifer PA J Magn Reson; 2010 Jul; 205(1):130-40. PubMed ID: 20462776 [TBL] [Abstract][Full Text] [Related]
12. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations. Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639 [TBL] [Abstract][Full Text] [Related]
13. Analysis of phosphorylated metabolites in crayfish extracts by two-dimensional 1H-31P NMR heteronuclear total correlation spectroscopy (heteroTOCSY). Gradwell MJ; Fan TW; Lane AN Anal Biochem; 1998 Oct; 263(2):139-49. PubMed ID: 9799525 [TBL] [Abstract][Full Text] [Related]
14. Multiple quantum correlated spectroscopy revamped by asymmetric z-gradient echo detection signal intensity as a function of the read pulse flip angle as verified by heteronuclear 1H/31P experiments. Jiang B; Liu H; Liu M; Ye C; Mao XA J Chem Phys; 2007 Feb; 126(5):054502. PubMed ID: 17302480 [TBL] [Abstract][Full Text] [Related]
15. High-resolution intermolecular zero-quantum coherence spectroscopy under inhomogeneous fields with effective solvent suppression. Chen X; Lin M; Chen Z; Cai S; Zhong J Phys Chem Chem Phys; 2007 Dec; 9(47):6231-40. PubMed ID: 18046472 [TBL] [Abstract][Full Text] [Related]
16. Efficient 1H nuclear magnetic resonance method for improved quality control analyses of Ginkgo constituents. Li CY; Lin CH; Wu CC; Lee KH; Wu TS J Agric Food Chem; 2004 Jun; 52(12):3721-5. PubMed ID: 15186088 [TBL] [Abstract][Full Text] [Related]
17. Positive identification of the principal component of a white powder as scopolamine by quantitative one-dimensional and two-dimensional NMR techniques. Henderson TJ; Cullinan DB; Lawrence RJ; Oyler JM J Forensic Sci; 2008 Jan; 53(1):151-61. PubMed ID: 18279252 [TBL] [Abstract][Full Text] [Related]
18. Effects of small neutral molecules on phospholipid bicelle ordering. Li X; Goodson BM Langmuir; 2004 Sep; 20(20):8437-41. PubMed ID: 15379458 [TBL] [Abstract][Full Text] [Related]
19. NMR solvent shifts of acetonitrile from frozen density embedding calculations. Bulo RE; Jacob CR; Visscher L J Phys Chem A; 2008 Mar; 112(12):2640-7. PubMed ID: 18302351 [TBL] [Abstract][Full Text] [Related]
20. Analysis of phospholipids in brain tissue by 31P NMR at different compositions of the solvent system chloroform-methanol-water. Edzes HT; Teerlink T; van der Knaap MS; Valk J Magn Reson Med; 1992 Jul; 26(1):46-59. PubMed ID: 1625566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]