These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9025995)

  • 1. In vitro cell behavior of osteoblasts on Pyrost bone substitute.
    Tsuang YH; Lin FH; Sun JS; Hang YS; Liu HC
    Anat Rec; 1997 Feb; 247(2):164-9. PubMed ID: 9025995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility and osteoconductivity of the pyrost bone substitutes.
    Tsuang YH; Lin FH; Tai HC; Sun JS; Liu HC; Hang YS
    Histol Histopathol; 1997 Jan; 12(1):19-24. PubMed ID: 9046039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA image cytometry and Ag-NORs-staining application in biocompatibility studies on human osteoblast cells in vitro.
    Josset Y; Oum'hamed Z; Zarrinpour A; Lorenzato M; Adnet JJ; Laurent-Maquin D
    Biomaterials; 1998 Oct; 19(19):1791-8. PubMed ID: 9856590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pyrost, a spongious, mineral bone substitute. Experimental bases and 13-year clinical experience in over 1000 cases].
    Mittelmeier H; Mittelmeier W; Gleitz M
    Orthopade; 1998 Feb; 27(2):126-35. PubMed ID: 9530669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The culture of human osteoblasts upon bone graft substitutes.
    Begley CT; Doherty MJ; Hankey DP; Wilson DJ
    Bone; 1993; 14(4):661-6. PubMed ID: 8274310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial attachment of osteoblasts to an optimised HAPEX topography.
    Dalby MJ; Kayser MV; Bonfield W; Di Silvio L
    Biomaterials; 2002 Feb; 23(3):681-90. PubMed ID: 11771688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Long-term results of using Pyrost in orthopedic operations--our own observations].
    Zwierzchowski TJ; Fabiś J
    Chir Narzadow Ruchu Ortop Pol; 2004; 69(1):27-30. PubMed ID: 15305670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary osteoblast cell response to sol-gel derived bioactive glass foams.
    Valerio P; Guimaráes MH; Pereira MM; Leite MF; Goes AM
    J Mater Sci Mater Med; 2005 Sep; 16(9):851-6. PubMed ID: 16167114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone cell attachment to dental implants of different surface characteristics.
    Lumbikanonda N; Sammons R
    Int J Oral Maxillofac Implants; 2001; 16(5):627-36. PubMed ID: 11669244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate).
    Arbez B; Libouban H
    Morphologie; 2017 Sep; 101(334):154-163. PubMed ID: 28506709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study.
    Kübler A; Neugebauer J; Oh JH; Scheer M; Zöller JE
    Implant Dent; 2004 Jun; 13(2):171-9. PubMed ID: 15179094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study.
    Sammons RL; Lumbikanonda N; Gross M; Cantzler P
    Clin Oral Implants Res; 2005 Dec; 16(6):657-66. PubMed ID: 16307572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast responses to orthopedic implant materials in vitro.
    Puleo DA; Holleran LA; Doremus RH; Bizios R
    J Biomed Mater Res; 1991 Jun; 25(6):711-23. PubMed ID: 1874756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast function on synthetic biodegradable polymers.
    Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG
    J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) supports in vitro osteogenesis.
    Kumarasuriyar A; Jackson RA; Grøndahl L; Trau M; Nurcombe V; Cool SM
    Tissue Eng; 2005; 11(7-8):1281-95. PubMed ID: 16144464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic.
    Sarmento C; Luklinska ZB; Brown L; Anseau M; De Aza PN; De Aza S; Hughes FJ; McKay IJ
    J Biomed Mater Res A; 2004 May; 69(2):351-8. PubMed ID: 15058008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced osteoblast functions on RGD immobilized surface.
    Huang H; Zhao Y; Liu Z; Zhang Y; Zhang H; Fu T; Ma X
    J Oral Implantol; 2003; 29(2):73-9. PubMed ID: 12760450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone demineralization with citric acid enhances adhesion and spreading of preosteoblasts.
    de Rezende ML; Coesta PT; de Oliveira RC; Salmeron S; Sant'Ana AC; Damante CA; Greghi SL; Consolaro A
    J Periodontol; 2015 Jan; 86(1):146-54. PubMed ID: 25272980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.