These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 902689)

  • 21. Postrepolarization refractoriness versus conduction slowing caused by class I antiarrhythmic drugs: antiarrhythmic and proarrhythmic effects.
    Kirchhof PF; Fabritz CL; Franz MR
    Circulation; 1998 Jun; 97(25):2567-74. PubMed ID: 9657478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation.
    Echt DS; Black JN; Barbey JT; Coxe DR; Cato E
    Circulation; 1989 May; 79(5):1106-17. PubMed ID: 2469545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacology of antiarrhythmic drugs.
    Rusy BF
    Med Clin North Am; 1974 Sep; 58(5):987-94. PubMed ID: 4608525
    [No Abstract]   [Full Text] [Related]  

  • 24. Antiarrhythmic drugs.
    Rosen MR; Gelband H
    Am Heart J; 1971 Mar; 81(3):428-36. PubMed ID: 4926360
    [No Abstract]   [Full Text] [Related]  

  • 25. Spatiotemporal dynamics of reentrant ventricular tachycardias in canine myocardial infarction: pharmacological modulation.
    Hélie F; Vinet A; Cardinal R
    Can J Physiol Pharmacol; 2003 May; 81(5):413-22. PubMed ID: 12774847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic interaction between class I antiarrhythmic drugs and halothane in depressant effects on ventricular activation in a canine myocardial infarction model.
    Hashimoto H; Imamura S; Ikeda K; Nakashima M
    Biol Pharm Bull; 1994 Mar; 17(3):449-53. PubMed ID: 8019516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review: Electrolyte and antiarrhythmic drug interaction.
    Dreifus LS; de Azevedo IM; Watanabe Y
    Am Heart J; 1974 Jul; 88(1):95-107. PubMed ID: 4152041
    [No Abstract]   [Full Text] [Related]  

  • 28. [Actions of anti-arrhythmic agents on physiology of myocardial cell membrane].
    Mashiba H; Kanaya S
    Nihon Rinsho; 1974 Sep; 32(9):2829-34. PubMed ID: 4613891
    [No Abstract]   [Full Text] [Related]  

  • 29. Procainamide and lidocaine produce dissimilar changes in ventricular repolarization and arrhythmogenicity in guinea-pig.
    Osadchii OE
    Fundam Clin Pharmacol; 2014 Aug; 28(4):382-93. PubMed ID: 23952942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of several anti-arrhythmia agents on excitability and conduction depressed by digitalis agents].
    Márquez M; Kabela E
    Arch Inst Cardiol Mex; 1984; 54(6):535-44. PubMed ID: 6241458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antiarrhythmic activity of p-hydroxy-N-(2-diethylaminoethyl) benzamide (the p-hydroxy isostere of procainamide) in dogs and mice.
    Drayer DE; Slaven BH; Reidenberg MM; Bagwell EE; Cordova M
    J Med Chem; 1977 Feb; 20(2):270-4. PubMed ID: 836498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative structure activity studies of antiarrhythmic properties in a series of lidocaine and procainamide derivatives.
    Ehring GR; Moyer JW; Hondeghem LM
    J Pharmacol Exp Ther; 1988 Feb; 244(2):479-92. PubMed ID: 2450194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of AHR-12234 on cardiac transmembrane action potentials, in situ cardiac electrophysiology and experimental models for arrhythmias.
    Wu KM; Proakis AG; Hunter TL; Shanklin JR
    Arch Int Pharmacodyn Ther; 1989; 301():131-50. PubMed ID: 2624512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failure of antiarrhythmic drugs to affect epicardial delay during acute experimental coronary artery occlusion and reperfusion: correlation with lack of antiarrhythmic efficacy.
    Naito M; Michelson EL; Kmetzo JJ; Kaplinsky E; Dreifus LS
    J Pharmacol Exp Ther; 1981 Aug; 218(2):475-80. PubMed ID: 7252847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of antiarrhythmic drugs on triggered sustained rhythmic activity in cardiac Purkinje fibers.
    Arnsdorf MF
    J Pharmacol Exp Ther; 1977 Jun; 201(3):689-700. PubMed ID: 577217
    [No Abstract]   [Full Text] [Related]  

  • 36. Comparison of acute hemodynamic effects of lidocaine and procainamide for postoperative ventricular arrhythmias in dogs.
    Chandler JC; Monnet E; Staatz AJ
    J Am Anim Hosp Assoc; 2006; 42(4):262-8. PubMed ID: 16822764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamic interaction of procainamide and lidocaine after experimental myocardial infarction.
    Côte P; Harrison DC; Basile J; Schroeder JS
    Am J Cardiol; 1973 Dec; 32(7):937-42. PubMed ID: 4757234
    [No Abstract]   [Full Text] [Related]  

  • 38. Effective plasma concentrations of antiarrhythmic drugs against sustained halothane-adrenaline arrhythmia in dogs.
    Shibuya T; Hashimoto K; Imai S
    J Cardiovasc Pharmacol; 1983; 5(4):538-45. PubMed ID: 6193348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiarrhythmic properties of tetrodotoxin against occlusion-induced arrhythmias in the rat: a novel approach to the study of the antiarrhythmic effects of ventricular sodium channel blockade.
    Abraham S; Beatch GN; MacLeod BA; Walker MJ
    J Pharmacol Exp Ther; 1989 Dec; 251(3):1166-73. PubMed ID: 2557414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observations on the effects of selected antiarrhythmic drugs on mammalian cardiac purkinje fibers with two levels of steady-state potential: influences of lidocaine, phenytoin, propranolol, disopyramide and procainamide on repolarization, action potential shape and conduction.
    Arnsdorf MF; Mehlman DJ
    J Pharmacol Exp Ther; 1978 Dec; 207(3):983-91. PubMed ID: 731444
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.