These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 902762)

  • 1. On the origin of the cyanolysable sulphur in molybdenum iron/sulphur flavin hydroxylases.
    Coughlan MP
    FEBS Lett; 1977 Sep; 81(1):1-6. PubMed ID: 902762
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state.
    Barber MJ; Siegel LM
    Biochemistry; 1983 Feb; 22(3):618-24. PubMed ID: 6301524
    [No Abstract]   [Full Text] [Related]  

  • 3. Turkey liver xanthine dehydrogenase: properties of the enzyme dependent on the content of functional active sites.
    Cleere WF; O'Regan C; Coughlan MP
    Biochem J; 1974 Nov; 143(2):465-8. PubMed ID: 4462563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of inactivation of molybdoenzymes by cyanide.
    Coughlan MP; Johnson JL; Rajagopalan KV
    J Biol Chem; 1980 Apr; 255(7):2694-9. PubMed ID: 6244290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turkey liver xanthine dehydrogenase. Reactivation of the cyanide-inactivated enxyme by sulphide and by selenide.
    Cleere WF; Coughlan MP
    Biochem J; 1974 Nov; 143(2):331-40. PubMed ID: 4462558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 8. Electron paramagnetic resonance properties and oxidation-reduction potentials of the molybdenum, flavin, and iron-sulfur centers of chicken liver xanthine dehydrogenase.
    Barber MJ; Coughlan MP; Kanda M; Rajagopalan KV
    Arch Biochem Biophys; 1980 May; 201(2):468-75. PubMed ID: 6249208
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases.
    Wahl RC; Rajagopalan KV
    J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of molybdenum-sulphur compounds with cyanide: chemical evolution and deactivation of molybdoenzymes.
    Mitchell PC; Pygall CF
    J Inorg Biochem; 1979 Aug; 11(1):25-9. PubMed ID: 479877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syncatalytic modification of chicken liver xanthine dehydrogenase by hydrogen peroxide. The nature of the reaction.
    Betcher-Lange SL; Coughlan MP; Rajagopalan KV
    J Biol Chem; 1979 Sep; 254(18):8825-9. PubMed ID: 479163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature of the sulphur atom liberated from xanthine oxidase by cyanide. Evidence from e.p.r. spectroscopy after 35S substitution.
    Malthouse JP; Bray RC
    Biochem J; 1980 Oct; 191(1):265-7. PubMed ID: 6258583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of arsenite with the molybdenum center of chicken liver xanthine dehydrogenase.
    Johnson JL; Rajagopalan KV
    Bioinorg Chem; 1978; 8(5):439-44. PubMed ID: 210844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of molybdenum in human biology.
    Coughlan MP
    J Inherit Metab Dis; 1983; 6 Suppl 1():70-7. PubMed ID: 6312191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of rosy mutant strains of Drosophila melanogaster to probe the structure and function of xanthine dehydrogenase.
    Hughes RK; Doyle WA; Chovnick A; Whittle JR; Burke JF; Bray RC
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):507-13. PubMed ID: 1637342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inactivation of xanthine-oxidizing enzymes, native and deflavo forms, in the presence of oxygen.
    Coughlan MP; Johnson DB
    Biochem Soc Trans; 1979 Feb; 7(1):18-21. PubMed ID: 437270
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation of the domain containing the molybdenum, iron-sulfur I, and iron-sulfur II centers of chicken liver xanthine dehydrogenase.
    Coughlan MP; Betcher-Lange SL; Rajagopalan KV
    J Biol Chem; 1979 Nov; 254(21):10694-9. PubMed ID: 227849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.