These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 9027731)

  • 61. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A 'natural' mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1).
    Gaisne M; Bécam AM; Verdière J; Herbert CJ
    Curr Genet; 1999 Oct; 36(4):195-200. PubMed ID: 10541856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans.
    Khalaf RA; Zitomer RS
    Genetics; 2001 Apr; 157(4):1503-12. PubMed ID: 11290707
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response.
    Kwast KE; Lai LC; Menda N; James DT; Aref S; Burke PV
    J Bacteriol; 2002 Jan; 184(1):250-65. PubMed ID: 11741867
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of Ergosterol Biosynthesis in
    Jordá T; Puig S
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32679672
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response.
    Vizoso-Vázquez A; Lamas-Maceiras M; Becerra M; González-Siso MI; Rodríguez-Belmonte E; Cerdán ME
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):173-84. PubMed ID: 22189861
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
    Bendjilali N; MacLeon S; Kalra G; Willis SD; Hossian AK; Avery E; Wojtowicz O; Hickman MJ
    G3 (Bethesda); 2017 Jan; 7(1):221-231. PubMed ID: 27883312
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of gene expression by oxygen in Saccharomyces cerevisiae.
    Zitomer RS; Lowry CV
    Microbiol Rev; 1992 Mar; 56(1):1-11. PubMed ID: 1579104
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transcriptional regulation of yeast oxidative phosphorylation hypoxic genes by oxidative stress.
    Liu J; Barrientos A
    Antioxid Redox Signal; 2013 Dec; 19(16):1916-27. PubMed ID: 22703342
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.
    Pascual-Ahuir A; Serrano R; Proft M
    Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism.
    Auble DT; Hansen KE; Mueller CG; Lane WS; Thorner J; Hahn S
    Genes Dev; 1994 Aug; 8(16):1920-34. PubMed ID: 7958867
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage.
    Rep M; Proft M; Remize F; Tamás M; Serrano R; Thevelein JM; Hohmann S
    Mol Microbiol; 2001 Jun; 40(5):1067-83. PubMed ID: 11401713
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes.
    Crisp RJ; Adkins EM; Kimmel E; Kaplan J
    EMBO J; 2006 Feb; 25(3):512-21. PubMed ID: 16437160
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The yeast activator HAP1--a GAL4 family member--binds DNA in a directly repeated orientation.
    Zhang L; Guarente L
    Genes Dev; 1994 Sep; 8(17):2110-9. PubMed ID: 7958882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2.
    Wagner C; Dietz M; Wittmann J; Albrecht A; Schüller HJ
    Mol Microbiol; 2001 Jul; 41(1):155-66. PubMed ID: 11454208
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A unique mechanism of chaperone action: heme regulation of Hap1 activity involves separate control of repression and activation.
    Lee HC; Zhang L
    Protein Pept Lett; 2009; 16(6):642-9. PubMed ID: 19519523
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA-binding properties of the yeast Rgt1 repressor.
    Kim JH
    Biochimie; 2009 Feb; 91(2):300-3. PubMed ID: 18950675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1.
    Zhang L; Bermingham-McDonogh O; Turcotte B; Guarente L
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2851-5. PubMed ID: 8464899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.