These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9028019)

  • 1. The role of constrained self-organization in genome structural evolution.
    von Sternberg R
    Acta Biotheor; 1996 Jun; 44(2):95-118. PubMed ID: 9028019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal distribution and evolution of repetitive DNAs in fish.
    Cioffi MB; Bertollo LA
    Genome Dyn; 2012; 7():197-221. PubMed ID: 22759820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the genome readies itself for evolution.
    Pennisi E
    Science; 1998 Aug; 281(5380):1131,1133-4. PubMed ID: 9735027
    [No Abstract]   [Full Text] [Related]  

  • 4. BAC end sequences and a physical map reveal transposable element content and clustering patterns in the genome of Magnaporthe grisea.
    Thon MR; Martin SL; Goff S; Wing RA; Dean RA
    Fungal Genet Biol; 2004 Jul; 41(7):657-66. PubMed ID: 15275661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome.
    Wu C; Wang S; Zhang HB
    Genomics; 2006 Oct; 88(4):394-406. PubMed ID: 16806804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae.
    Thon MR; Pan H; Diener S; Papalas J; Taro A; Mitchell TK; Dean RA
    Genome Biol; 2006; 7(2):R16. PubMed ID: 16507177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposable elements and the evolution of genome organization in mammals.
    Wichman HA; Van den Bussche RA; Hamilton MJ; Baker RJ
    Genetica; 1992; 86(1-3):287-93. PubMed ID: 1334913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposable elements and the evolution of genome size in eukaryotes.
    Kidwell MG
    Genetica; 2002 May; 115(1):49-63. PubMed ID: 12188048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data.
    Ganley AR; Kobayashi T
    Genome Res; 2007 Feb; 17(2):184-91. PubMed ID: 17200233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome ecosystem and transposable elements species.
    Le Rouzic A; Dupas S; Capy P
    Gene; 2007 Apr; 390(1-2):214-20. PubMed ID: 17188821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The influence of transposable elements on genome size].
    Biémont C; Vieira C
    J Soc Biol; 2004; 198(4):413-7. PubMed ID: 15969348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary active transposable elements in the genome of the coelacanth.
    Chalopin D; Fan S; Simakov O; Meyer A; Schartl M; Volff JN
    J Exp Zool B Mol Dev Evol; 2014 Sep; 322(6):322-33. PubMed ID: 23908136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional liaisons between transposable elements and satellite DNAs.
    Meštrović N; Mravinac B; Pavlek M; Vojvoda-Zeljko T; Šatović E; Plohl M
    Chromosome Res; 2015 Sep; 23(3):583-96. PubMed ID: 26293606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering.
    Shapiro JA
    Gene; 2005 Jan; 345(1):91-100. PubMed ID: 15716117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of transposable elements on polyploid plant genomes.
    Vicient CM; Casacuberta JM
    Ann Bot; 2017 Aug; 120(2):195-207. PubMed ID: 28854566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presidential address. Transposable elements, epigenetics, and genome evolution.
    Fedoroff NV
    Science; 2012 Nov; 338(6108):758-67. PubMed ID: 23145453
    [No Abstract]   [Full Text] [Related]  

  • 20. Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans.
    Erlandsson R; Wilson JF; Pääbo S
    Mol Biol Evol; 2000 May; 17(5):804-12. PubMed ID: 10779541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.