These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 9028924)
41. Recovery of Bacillus thuringiensis from marine sediments of Japan. Maeda M; Mizuki E; Nakamura Y; Hatano T; Ohba M Curr Microbiol; 2000 Jun; 40(6):418-22. PubMed ID: 10827286 [TBL] [Abstract][Full Text] [Related]
42. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene. Zhang LL; Lin J; Luo L; Guan CY; Zhang QL; Guan Y; Zhang Y; Ji JT; Huang ZP; Guan X Lett Appl Microbiol; 2007 Mar; 44(3):301-7. PubMed ID: 17309508 [TBL] [Abstract][Full Text] [Related]
43. The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity. Swiecicka I; Mahillon J Environ Microbiol; 2005 Jan; 7(1):34-9. PubMed ID: 15643933 [TBL] [Abstract][Full Text] [Related]
44. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. Kati H; Sezen K; Nalcacioglu R; Demirbag Z J Microbiol; 2007 Dec; 45(6):553-7. PubMed ID: 18176540 [TBL] [Abstract][Full Text] [Related]
45. Multiple copies of the 16S rRNA gene in Nocardia nova isolates and implications for sequence-based identification procedures. Conville PS; Witebsky FG J Clin Microbiol; 2005 Jun; 43(6):2881-5. PubMed ID: 15956412 [TBL] [Abstract][Full Text] [Related]
46. A phylogenetic analysis of Bacillus thuringiensis serovars by RFLP-based ribotyping. Joung KB; Côté JC J Appl Microbiol; 2001 Aug; 91(2):279-89. PubMed ID: 11473592 [TBL] [Abstract][Full Text] [Related]
47. [Specificity and active principle of Bacillus thuringiensis var. israelensis]. Larget I; de Barjac H Bull Soc Pathol Exot Filiales; 1981; 74(2):216-27. PubMed ID: 7249246 [TBL] [Abstract][Full Text] [Related]
48. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Ichimatsu T; Mizuki E; Nishimura K; Akao T; Saitoh H; Higuchi K; Ohba M Curr Microbiol; 2000 Apr; 40(4):217-20. PubMed ID: 10688688 [TBL] [Abstract][Full Text] [Related]
49. Bacterial association observations in Lucilia sericata and Lucilia cuprina organs through 16S rRNA gene sequencing. Gasz NE; Geary MJ; Doggett SL; Harvey ML Appl Microbiol Biotechnol; 2021 Feb; 105(3):1091-1106. PubMed ID: 33415370 [TBL] [Abstract][Full Text] [Related]
50. Use of cellular fatty acid analysis to characterize commercial brands of Bacillus thuringiensis var. israelensis. Siegel JP; Smith AR; Maddox JV; Novak RJ J Am Mosq Control Assoc; 1993 Sep; 9(3):330-4. PubMed ID: 8245945 [TBL] [Abstract][Full Text] [Related]
51. Fleece-rot: the epidemiology and significance of the disease in sheep. Salisbury RH; Barrowman PR J S Afr Vet Assoc; 1984 Sep; 55(3):147-51. PubMed ID: 6387118 [TBL] [Abstract][Full Text] [Related]
52. Occurrence of Bacillus thuringiensis in canopies of a natural lucidophyllous forest in Japan. Noda T; Kagoshima K; Uemori A; Yasutake K; Ichikawa M; Ohba M Curr Microbiol; 2009 Mar; 58(3):195-200. PubMed ID: 19002526 [TBL] [Abstract][Full Text] [Related]
53. Detection of Pseudomonas aeruginosa from ovine fleece washings by PCR amplification of 16S ribosomal RNA. Kingsford NM; Raadsma HW Vet Microbiol; 1995 Nov; 47(1-2):61-70. PubMed ID: 8604555 [TBL] [Abstract][Full Text] [Related]
54. Screening of the insecticidal activity of Bacillus thuringiensis strains against Lygus hesperus (Hemiptera: Miridae) nymphal population. Wellman-Desbiens E; Côté JC J Econ Entomol; 2004 Apr; 97(2):251-8. PubMed ID: 15154442 [TBL] [Abstract][Full Text] [Related]
55. A single phylogenetic analysis of Bacillus thuringiensis strains and bacilli species inferred from 16S rRNA gene restriction fragment length polymorphism is congruent with two independent phylogenetic analyses. Joung KB; Côté JC J Appl Microbiol; 2002; 93(6):1075-82. PubMed ID: 12452965 [TBL] [Abstract][Full Text] [Related]
56. A genomics-informed, SNP association study reveals FBLN1 and FABP4 as contributing to resistance to fleece rot in Australian Merino sheep. Smith WJ; Li Y; Ingham A; Collis E; McWilliam SM; Dixon TJ; Norris BJ; Mortimer SI; Moore RJ; Reverter A BMC Vet Res; 2010 May; 6():27. PubMed ID: 20500888 [TBL] [Abstract][Full Text] [Related]
57. Assessment of the efficacy of Japanese Bacillus thuringiensis isolates against the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). Tsuchiya S; Kasaishi Y; Harada H; Ichimatsu T; Saitoh H; Mizuki E; Ohba M J Invertebr Pathol; 2002 Oct; 81(2):122-6. PubMed ID: 12445796 [TBL] [Abstract][Full Text] [Related]
58. Use of silkworms to evaluate the pathogenicity of bacteria attached to cedar pollen. Hu Y; Hamamoto H; Sekimizu K Drug Discov Ther; 2013 Aug; 7(4):153-7. PubMed ID: 24071577 [TBL] [Abstract][Full Text] [Related]
59. An in-vitro technique for studying fleece-rot and fly strike in sheep. Merritt GC; Watts JE Aust Vet J; 1978 Nov; 54(11):513-6. PubMed ID: 582384 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of larvicidal activity and effects on post embrionary development of laboratory reared Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae), treated with Brevibacillus laterosporus. Pessanha RR; Carramaschi IN; Dos Santos Mallet JR; Queiroz MM; Zahner V J Invertebr Pathol; 2015 Jun; 128():44-6. PubMed ID: 25937186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]