These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 902915)

  • 1. Patterns of apparent co-operativity of the steady-state of a simple non-equilibrium random substrate-modifier mechanism [proceedings].
    Whitehead EP; Egmond MR
    Biochem Soc Trans; 1977; 5(3):789-90. PubMed ID: 902915
    [No Abstract]   [Full Text] [Related]  

  • 2. Patterns of apparent co-operativity in a simple random non-equilibrium enzyme--substrate--modifier mechanism. Comparison with equilibrium allosteric models.
    Whitehead EP; Egmond MR
    Biochem J; 1979 Feb; 177(2):631-9. PubMed ID: 435256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-operativity in monomeric enzymes.
    Cornish-Bowden A; Cárdenas ML
    J Theor Biol; 1987 Jan; 124(1):1-23. PubMed ID: 3309473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Letter: Kinetic negative co-operativity in the allosteric model of Monod, Wyman and Changeux.
    Goldbeter A
    J Mol Biol; 1974 Nov; 90(1):185-90. PubMed ID: 4453011
    [No Abstract]   [Full Text] [Related]  

  • 6. Apparent co-operativity for highly concentrated Michaelian and allosteric enzymes.
    Laurent M; Kellershohn N
    J Mol Biol; 1984 Apr; 174(3):543-55. PubMed ID: 6716486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic co-operativity of monomeric mnemonical enzymes. The significance of the kinetic Hill coefficient.
    Ricard J; Noat G
    Eur J Biochem; 1985 Nov; 152(3):557-64. PubMed ID: 4054121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-operativity and the methods of plotting binding and steady-state kinetic data.
    Whitehead EP
    Biochem J; 1978 May; 171(2):501-4. PubMed ID: 656060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of positive and negative co-operativity with allosteric enzymes and the interpretation of sigmoid curves and non-linear double reciprocal plots for the MWC and KNF models.
    Bardsley WG; Waight RD
    J Theor Biol; 1978 Jan; 70(2):135-56. PubMed ID: 633912
    [No Abstract]   [Full Text] [Related]  

  • 11. A steady-state kinetic method for the verification of the rapid-equilibrium assumption in allosteric enzymes.
    Symcox MM; Reinhart GD
    Anal Biochem; 1992 Nov; 206(2):394-9. PubMed ID: 1443611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The graphical diagnosis of positive and negative co-operativity and the factorability of the allosteric-binding polynomial [proceedings].
    Bardsley WG
    Biochem Soc Trans; 1977; 5(3):753-6. PubMed ID: 902907
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of competition for substrate sites in an allosteric enzyme with co-operative kinetics. Effects of dAMP and dUMP on donkey spleen deoxycytidylate aminohydrolase.
    Mastrantonio S; Nucci R; Vaccaro C; Rossi M; Whitehead EP
    Eur J Biochem; 1983 Dec; 137(3):421-7. PubMed ID: 6662104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the allosteric regulation of pH-sensitive enzymes.
    Shindler JS; Tipton KF
    Biochem J; 1977 Nov; 167(2):479-82. PubMed ID: 23113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Deviations from hyperbolic kinetics in slowly dissociating allosteric enzyme systems].
    Kuranov BI; Dorozhko AI; Kagan ZS; Iakovlev VA
    Biokhimiia; 1975; 40(4):793-801. PubMed ID: 1203389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplifications of the derivations and forms of steady-state equations for non-equilibrium random substrate-modifier and allosteric enzyme mechanisms.
    Whitehead EP
    Biochem J; 1976 Dec; 159(3):449-56. PubMed ID: 1008809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The steady-state rate equation for the general modifier mechanism of Botts and Morales when the quasi-equilibrium assumption for the binding of the modifier is made.
    Varón R; García-Moreno M; Garrido C; García-Cánovas F
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):1072-3. PubMed ID: 1471980
    [No Abstract]   [Full Text] [Related]  

  • 18. Some equilibrium and non-equilibrium properties of the allosteric interactions in enzymes. III. Dynamics of the amino acid residues and ligand binding process.
    Chuknyiski P
    J Theor Biol; 1978 Oct; 74(3):389-95. PubMed ID: 723283
    [No Abstract]   [Full Text] [Related]  

  • 19. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
    Kumar A; Chatterjee S; Nandi M; Dua A
    J Chem Phys; 2016 Aug; 145(8):085103. PubMed ID: 27586952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.