These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9029302)

  • 21. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study.
    Al-Jassir FF; Fouad H; Alothman OY
    Biomed Eng Online; 2013 Jan; 12():5. PubMed ID: 23324627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components.
    Harrigan TP; Harris WH
    J Biomech; 1991; 24(11):1047-58. PubMed ID: 1761581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of a thick cement mantle depends on stem geometry and stem-cement interfacial bonding.
    Caruana J; Janssen D; Verdonschot N; Blunn GW
    Proc Inst Mech Eng H; 2009 Apr; 223(3):315-27. PubMed ID: 19405437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probabilistic analysis of the influence of the bonding degree of the stem-cement interface in the performance of cemented hip prostheses.
    Pérez MA; Grasa J; García-Aznar JM; Bea JA; Doblaré M
    J Biomech; 2006; 39(10):1859-72. PubMed ID: 16054633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The skeletal response to matt and polished cemented femoral stems.
    Barker DS; Wang AW; Yeo MF; Nawana NS; Brumby SA; Pearcy MJ; Howie DW
    J Bone Joint Surg Br; 2000 Nov; 82(8):1182-8. PubMed ID: 11132284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between stem subsidence and improvement in the radiolucency in polished tapered stems.
    Kaneuji A; Sugimori T; Ichiseki T; Fukui K; Yamada K; Matsumoto T
    Int Orthop; 2006 Oct; 30(5):387-90. PubMed ID: 16614823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element-based preclinical testing of cemented total hip implants.
    Stolk J; Janssen D; Huiskes R; Verdonschot N
    Clin Orthop Relat Res; 2007 Mar; 456():138-47. PubMed ID: 17075379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.
    Lu Z; McKellop HA
    Proc Inst Mech Eng H; 2011 Aug; 225(8):809-20. PubMed ID: 21922957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cement debonding process of total hip arthroplasty stems.
    Verdonschot N; Huiskes R
    Clin Orthop Relat Res; 1997 Mar; (336):297-307. PubMed ID: 9060516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive bone cements.
    Harper EJ
    Proc Inst Mech Eng H; 1998; 212(2):113-20. PubMed ID: 9612002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro measurement of strain in the bone cement surrounding the femoral component of total hip replacements during simulated gait and stair-climbing.
    O'Connor DO; Burke DW; Jasty M; Sedlacek RC; Harris WH
    J Orthop Res; 1996 Sep; 14(5):769-77. PubMed ID: 8893771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of cement-stem debonding in THA on the long-term failure probability of cement.
    Verdonschot N; Huiskes R
    J Biomech; 1997 Aug; 30(8):795-802. PubMed ID: 9239564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental?
    Takahashi E; Kaneuji A; Tsuda R; Numata Y; Ichiseki T; Fukui K; Kawahara N
    Bone Joint Res; 2017 May; 6(5):351-357. PubMed ID: 28566327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical aspects of degree of cement bonding and implant wedge effect.
    Yoon YS; Oxland TR; Hodgson AJ; Duncan CP; Masri BA; Choi D
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1141-7. PubMed ID: 18584929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.