These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9029368)

  • 1. Are ruminal bacteria armed with bacteriocins?
    Kalmokoff ML; Bartlett F; Teather RM
    J Dairy Sci; 1996 Dec; 79(12):2297-306. PubMed ID: 9029368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics.
    Russell JB; Mantovani HC
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):347-55. PubMed ID: 12125815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep.
    Cookson AL; Noel SJ; Kelly WJ; Attwood GT
    FEMS Microbiol Ecol; 2004 May; 48(2):199-207. PubMed ID: 19712403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens.
    Kalmokoff ML; Teather RM
    Appl Environ Microbiol; 1997 Feb; 63(2):394-402. PubMed ID: 9023920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved animal production by genetic engineering of ruminal bacteria.
    Brooker JD; Thomson AM; Ward H
    Australas Biotechnol; 1992 Oct; 2(5):288-91. PubMed ID: 1368926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of antimicrobial substances by lactic acid bacteria II: screening bacteriocin-producing strains with probiotic purposes and characterization of a Lactobacillus bacteriocin.
    Ocaña VS; Elena Nader-Macías M
    Methods Mol Biol; 2004; 268():347-53. PubMed ID: 15156045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ruminal lactic acid-utilizing bacteria on adaptation of cattle to high-energy rations.
    Cook MK; Cooley JH; Edens JD; Goetsch DD; Das NK; Huber TL
    Am J Vet Res; 1977 Jul; 38(7):1015-7. PubMed ID: 883707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract.
    O'Shea EF; Gardiner GE; O'Connor PM; Mills S; Ross RP; Hill C
    FEMS Microbiol Lett; 2009 Feb; 291(1):24-34. PubMed ID: 19076236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high-grain ration.
    Huber TL; Cooley JH; Goetsch DD; Das NK
    Am J Vet Res; 1976 May; 37(5):611-3. PubMed ID: 1275348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach.
    Paillard D; McKain N; Rincon MT; Shingfield KJ; Givens DI; Wallace RJ
    J Appl Microbiol; 2007 Oct; 103(4):1251-61. PubMed ID: 17897229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen.
    Paillard D; McKain N; Chaudhary LC; Walker ND; Pizette F; Koppova I; McEwan NR; Kopecný J; Vercoe PE; Louis P; Wallace RJ
    Antonie Van Leeuwenhoek; 2007 May; 91(4):417-22. PubMed ID: 17077990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meat-model system development for antibacterial activity determination.
    Vignolo G; Castellano P
    Methods Mol Biol; 2004; 268():367-70. PubMed ID: 15156047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why don't ruminal bacteria digest cellulose faster?
    Weimer PJ
    J Dairy Sci; 1996 Aug; 79(8):1496-502. PubMed ID: 8880475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriocin-based strategies for food biopreservation.
    Gálvez A; Abriouel H; López RL; Ben Omar N
    Int J Food Microbiol; 2007 Nov; 120(1-2):51-70. PubMed ID: 17614151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation.
    Topisirovic L; Kojic M; Fira D; Golic N; Strahinic I; Lozo J
    Int J Food Microbiol; 2006 Dec; 112(3):230-5. PubMed ID: 16764959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
    Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative characterization of reticular and duodenal digesta and possibilities of estimating microbial outflow from the rumen based on reticular sampling in dairy cows.
    Hristov AN
    J Anim Sci; 2007 Oct; 85(10):2606-13. PubMed ID: 17591704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo significance of bacteriocins and bacteriocin receptors.
    Govan JR
    Scand J Infect Dis Suppl; 1986; 49():31-7. PubMed ID: 3103211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria.
    Smith CJ; Hespell RB
    J Dairy Sci; 1983 Jul; 66(7):1536-46. PubMed ID: 6350393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.