BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9030199)

  • 1. Conductive Na+ transport in fetal lung alveolar apical membrane vesicles is regulated by fatty acids and G proteins.
    Fyfe GK; Kemp PJ; Olver RE
    Biochim Biophys Acta; 1997 Jan; 1355(1):33-42. PubMed ID: 9030199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of Na+ and Cl- conductances by PTX-sensitive G proteins in fetal lung apical membrane vesicles.
    Gambling L; Olver RE; Fyfe GK; Kemp PJ; Baines DL
    Biochim Biophys Acta; 1998 Jul; 1372(2):187-97. PubMed ID: 9675277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanosine nucleotide-dependent activation of the amiloride-blockable Na+ channel.
    Garty H; Yeger O; Yanovsky A; Asher C
    Am J Physiol; 1989 May; 256(5 Pt 2):F965-9. PubMed ID: 2541631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perinatal PTX-sensitive G-protein expression and regulation of conductive 22Na+ transport in lung apical membrane vesicles.
    Gambling L; Olver RE; Baines DL
    Biochim Biophys Acta; 1999 Jul; 1450(3):468-79. PubMed ID: 10395958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of GTP-binding protein regulation of phospholipase A2 activity in isolated human platelet membranes.
    Silk ST; Clejan S; Witkom K
    J Biol Chem; 1989 Dec; 264(36):21466-9. PubMed ID: 2513318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of adenylyl cyclase activity in brain membrane fractions by arachidonic acid and related unsaturated fatty acids.
    Nakamura J; Okamura N; Usuki S; Bannai S
    Arch Biochem Biophys; 2001 May; 389(1):68-76. PubMed ID: 11370673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G protein activation inhibits amiloride-blockable highly selective sodium channels in A6 cells.
    Ohara A; Matsunaga H; Eaton DC
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C352-60. PubMed ID: 8383428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G alpha i-3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways.
    Cantiello HF; Patenaude CR; Codina J; Birnbaumer L; Ausiello DA
    J Biol Chem; 1990 Dec; 265(35):21624-8. PubMed ID: 2174882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GTP analogues cause preferential translocation of an 18 kDa cytosolic G-protein to the membrane fraction in the ZR-75-1 human breast-cancer cell line.
    Levy J; King RJ
    Biochem J; 1990 Oct; 271(1):223-9. PubMed ID: 2121131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein.
    Dinudom A; Komwatana P; Young JA; Cook DI
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):549-55. PubMed ID: 8544120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins.
    Kume H; Graziano MP; Kotlikoff MI
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):11051-5. PubMed ID: 1438313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanine nucleotides regulate beta-adrenergic activation of Na-H exchange independently of receptor coupling to Gs.
    Barber DL; Ganz MB
    J Biol Chem; 1992 Oct; 267(29):20607-12. PubMed ID: 1328204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amiloride-sensitive Na+ channels in fetal type II pneumocytes are regulated by G proteins.
    MacGregor GG; Olver RE; Kemp PJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):L1-8. PubMed ID: 8048537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin stimulates G-protein-coupled phospholipase D in haematopoietic target cells.
    Clejan S; Mallia C; Vinson D; Dotson R; Beckman BS
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):853-60. PubMed ID: 8615780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/H+ exchange in vascular smooth muscle cells is controlled by GTP-binding proteins.
    Orlov SN; Aksentsev SL; Pokudin NI; Tremblay J; Hamet P
    Hypertension; 1998 Jan; 31(1 Pt 2):259-65. PubMed ID: 9453313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of guanosine 5'-[beta-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets.
    Authi KS; Rao GH; Evenden BJ; Crawford N
    Biochem J; 1988 Nov; 255(3):885-93. PubMed ID: 3063257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanine nucleotides modulate steady-state inactivation of voltage-gated sodium channels in frog olfactory receptor neurons.
    Pun RY; Kleene SJ; Gesteland RC
    J Membr Biol; 1994 Oct; 142(1):103-11. PubMed ID: 7707347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of brain Na+ channels by a G-protein-coupled pathway.
    Ma JY; Li M; Catterall WA; Scheuer T
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12351-5. PubMed ID: 7991631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of a guanine-nucleotide-binding protein-mediated mechanism in the enhancement of arachidonic acid liberation by phorbol 12-myristate 13-acetate and Ca2+ in saponin-permeabilized platelets.
    Akiba S; Sato T; Fujii T
    Biochim Biophys Acta; 1990 Jun; 1044(3):291-6. PubMed ID: 2114177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of 5-lipoxygenase by guanosine 5'-O-(3-thiotriphosphate) and other nucleoside phosphorothioates: redox properties of thionucleotide analogs.
    Denis D; Choo LY; Riendeau D
    Arch Biochem Biophys; 1989 Sep; 273(2):592-6. PubMed ID: 2549876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.