These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 9030262)
1. Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones. Starkov AA; Simonyan RA; Dedukhova VI; Mansurova SE; Palamarchuk LA; Skulachev VP Biochim Biophys Acta; 1997 Jan; 1318(1-2):173-83. PubMed ID: 9030262 [TBL] [Abstract][Full Text] [Related]
2. 6-Ketocholestanol is a recoupler for mitochondria, chromatophores and cytochrome oxidase proteoliposomes. Starkov AA; Bloch DA; Chernyak BV; Dedukhova VI; Mansurova SE; Severina II; Simonyan RA; Vygodina TV; Skulachev VP Biochim Biophys Acta; 1997 Jan; 1318(1-2):159-72. PubMed ID: 9030261 [TBL] [Abstract][Full Text] [Related]
3. Thyroxine reversibly inhibits the uncoupling action of protonophores on energy production in rat thymus lymphocytes. Palamarchuk LA; Mansurova SE; Starkov AA Biochemistry (Mosc); 2002 Apr; 67(4):468-72. PubMed ID: 11996661 [TBL] [Abstract][Full Text] [Related]
4. Effect of 6-ketocholestanol on FCCP- and DNP-induced uncoupling in plant mitochondria. Vianello A; Macri F; Braidot E; Mokhova EN FEBS Lett; 1995 May; 365(1):7-9. PubMed ID: 7774718 [TBL] [Abstract][Full Text] [Related]
5. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Andreyev AYu ; Bondareva TO; Dedukhova VI; Mokhova EN; Skulachev VP; Tsofina LM; Volkov NI; Vygodina TV Eur J Biochem; 1989 Jul; 182(3):585-92. PubMed ID: 2546761 [TBL] [Abstract][Full Text] [Related]
6. 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria. Starkov AA; Dedukhova VI; Skulachev VP FEBS Lett; 1994 Dec; 355(3):305-8. PubMed ID: 7988694 [TBL] [Abstract][Full Text] [Related]
7. Comparative study on uncoupling effects of laurate and lauryl sulfate on rat liver and skeletal muscle mitochondria. Samartsev VN; Simonyan RA; Markova OV; Mokhova EN; Skulachev VP Biochim Biophys Acta; 2000 Jul; 1459(1):179-90. PubMed ID: 10924910 [TBL] [Abstract][Full Text] [Related]
8. Decrease in mitochondrial energy coupling by thyroid hormones: a physiological effect rather than a pathological hyperthyroidism consequence. Bobyleva V; Pazienza TL; Maseroli R; Tomasi A; Salvioli S; Cossarizza A; Franceschi C; Skulachev VP FEBS Lett; 1998 Jul; 430(3):409-13. PubMed ID: 9688582 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of respiratory complex I by 6-ketocholestanol: Relevance to recoupling action in mitochondria. Grivennikova VG; Khailova LS; Zharova TV; Kotova EA; Antonenko YN Biochim Biophys Acta Bioenerg; 2022 Oct; 1863(7):148594. PubMed ID: 35850263 [TBL] [Abstract][Full Text] [Related]
10. Further studies on the recoupling effect of 6-ketocholestanol upon oxidative phosphorylation in uncoupled liver mitochondria. Cuéllar A; Ramirez J; Infante VM; Chavez E FEBS Lett; 1997 Jul; 411(2-3):365-8. PubMed ID: 9271237 [TBL] [Abstract][Full Text] [Related]
11. "Mild" uncoupling of mitochondria. Starkov AA Biosci Rep; 1997 Jun; 17(3):273-9. PubMed ID: 9337482 [TBL] [Abstract][Full Text] [Related]
12. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria. Samartsev VN; Markova OV; Zeldi IP; Smirnov AV Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806 [TBL] [Abstract][Full Text] [Related]
13. Zearalenone-induced uncoupling in plant mitochondria is sensitive to 6-ketocholestanol. Macri F; Vianello A; Braidot E; Petrussa E; Mokhova EN Biochem Mol Biol Int; 1996 Aug; 39(5):1001-6. PubMed ID: 8866017 [TBL] [Abstract][Full Text] [Related]
14. [Effect of palmitate on energy coupling in lymphocyte mitochondria]. Bakeeva LE; Kirillova GP; Kolesnikova OV; Konoshenko GI; Mokhova EN Biokhimiia; 1985 May; 50(5):774-81. PubMed ID: 4005321 [TBL] [Abstract][Full Text] [Related]
15. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase. Herweijer MA; Berden JA; Slater EC Biochim Biophys Acta; 1986 Apr; 849(2):276-87. PubMed ID: 2421768 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial uncoupling caused by a wide variety of protonophores is differently sensitive to carboxyatractyloside in rat heart and liver mitochondria. Khailova LS; Kirsanov RS; Rokitskaya TI; Krasnov VS; Korshunova GA; Kotova EA; Antonenko YN Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149506. PubMed ID: 39168228 [TBL] [Abstract][Full Text] [Related]
17. Cold-induced changes in the energy coupling and the UCP3 level in rodent skeletal muscles. Simonyan RA; Jimenez M; Ceddia RB; Giacobino JP; Muzzin P; Skulachev VP Biochim Biophys Acta; 2001 Jun; 1505(2-3):271-9. PubMed ID: 11334791 [TBL] [Abstract][Full Text] [Related]
18. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles. Bahi L; Garnier A; Fortin D; Serrurier B; Veksler V; Bigard AX; Ventura-Clapier R J Cell Physiol; 2005 Jun; 203(3):589-98. PubMed ID: 15605382 [TBL] [Abstract][Full Text] [Related]
19. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria. Schönfeld P; Schild L; Kunz W Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180 [TBL] [Abstract][Full Text] [Related]
20. Effect of cyclosporin A on energy coupling in pea stem mitochondria. Vianello A; Macri F; Braidot E; Mokhova EN FEBS Lett; 1995 Sep; 371(3):258-60. PubMed ID: 7556604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]