BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9030285)

  • 1. Ca2+ channel currents in type I carotid body cells from normoxic and chronically hypoxic rats.
    Carpenter E; Wyatt CN; Hatton CJ; Bee D; Peers C
    Adv Exp Med Biol; 1996; 410():105-8. PubMed ID: 9030285
    [No Abstract]   [Full Text] [Related]  

  • 2. Ca2+ channel currents in type I carotid body cells of normoxic and chronically hypoxic neonatal rats.
    Peers C; Carpenter E; Hatton CJ; Wyatt CN; Bee D
    Brain Res; 1996 Nov; 739(1-2):251-7. PubMed ID: 8955945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons.
    Pineda JC; Waters RS; Foehring RC
    J Neurophysiol; 1998 May; 79(5):2522-34. PubMed ID: 9582225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of Ca2+ influx through L-type voltage-dependent calcium channels by hydroxyl radical in mouse cerebral cortical neurons.
    Shirotani K; Katsura M; Higo A; Takesue M; Mohri Y; Shuto K; Tarumi C; Ohkuma S
    Brain Res Mol Brain Res; 2001 Aug; 92(1-2):12-8. PubMed ID: 11483237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-gated calcium channels in Pleurodeles oocytes: classification, modulation and functional roles.
    Ouadid-Ahidouch H
    Zygote; 1998 Feb; 6(1):85-95. PubMed ID: 9652075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-type calcium channels in type I cells of the rat carotid body.
    Fieber LA; McCleskey EW
    J Neurophysiol; 1993 Oct; 70(4):1378-84. PubMed ID: 7506754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder.
    Somogyi GT; Zernova GV; Tanowitz M; de Groat WC
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line.
    Kasai H; Neher E
    J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the dihydropyridine-insensitive Ca2+ influx by 8-bromo-guanosine-3':5'-monophosphate, cyclic (8-Br-cGMP) in bovine adrenal chromaffin cells.
    Rodriguez-Pascual F; Miras-Portugal MT; Torres M
    Neurosci Lett; 1994 Oct; 180(2):269-72. PubMed ID: 7535409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons.
    Brown AM; Schwindt PC; Crill WE
    J Neurophysiol; 1993 Oct; 70(4):1530-43. PubMed ID: 7506757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells.
    Li BS; Veeranna ; Grant P; Pant HC
    Brain Res Mol Brain Res; 1999 Jun; 70(1):84-91. PubMed ID: 10381546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro.
    Stea A; Jackson A; Macintyre L; Nurse CA
    J Neurosci; 1995 Mar; 15(3 Pt 2):2192-202. PubMed ID: 7891161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the single channels that underlie the N-type and L-type calcium currents in bullfrog sympathetic neurons.
    Elmslie KS
    J Neurosci; 1997 Apr; 17(8):2658-68. PubMed ID: 9092587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of dihydropyridine sensitive Ca2+ channels in rat hippocampal neurons in culture by parathyroid hormone.
    Hirasawa T; Nakamura T; Morita M; Ezawa I; Miyakawa H; Kudo Y
    Neurosci Lett; 1998 Nov; 256(3):139-42. PubMed ID: 9855359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of N- and L-type calcium channel antagonists and (+/-)-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands.
    O'Farrell M; Ziogas J; Marley PD
    Br J Pharmacol; 1997 Jun; 121(3):381-8. PubMed ID: 9179377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous calcium currents and transmitter release in cultured mouse spinal cord and dorsal root ganglion neurons.
    Yu C; Lin PX; Fitzgerald S; Nelson P
    J Neurophysiol; 1992 Mar; 67(3):561-75. PubMed ID: 1374458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current.
    Peers C
    Neurosci Lett; 1990 Nov; 119(2):253-6. PubMed ID: 1704113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium channels of cultured rat glomus cells in normoxia and acute hypoxia.
    Jiang RG; Eyzaguirre C
    Brain Res; 2005 Jan; 1031(1):56-66. PubMed ID: 15621012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P-type calcium channels in rat neocortical neurones.
    Brown AM; Sayer RJ; Schwindt PC; Crill WE
    J Physiol; 1994 Mar; 475(2):197-205. PubMed ID: 7517449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.