These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9030285)
1. Ca2+ channel currents in type I carotid body cells from normoxic and chronically hypoxic rats. Carpenter E; Wyatt CN; Hatton CJ; Bee D; Peers C Adv Exp Med Biol; 1996; 410():105-8. PubMed ID: 9030285 [No Abstract] [Full Text] [Related]
2. Ca2+ channel currents in type I carotid body cells of normoxic and chronically hypoxic neonatal rats. Peers C; Carpenter E; Hatton CJ; Wyatt CN; Bee D Brain Res; 1996 Nov; 739(1-2):251-7. PubMed ID: 8955945 [TBL] [Abstract][Full Text] [Related]
3. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. Pineda JC; Waters RS; Foehring RC J Neurophysiol; 1998 May; 79(5):2522-34. PubMed ID: 9582225 [TBL] [Abstract][Full Text] [Related]
4. Suppression of Ca2+ influx through L-type voltage-dependent calcium channels by hydroxyl radical in mouse cerebral cortical neurons. Shirotani K; Katsura M; Higo A; Takesue M; Mohri Y; Shuto K; Tarumi C; Ohkuma S Brain Res Mol Brain Res; 2001 Aug; 92(1-2):12-8. PubMed ID: 11483237 [TBL] [Abstract][Full Text] [Related]
5. Voltage-gated calcium channels in Pleurodeles oocytes: classification, modulation and functional roles. Ouadid-Ahidouch H Zygote; 1998 Feb; 6(1):85-95. PubMed ID: 9652075 [TBL] [Abstract][Full Text] [Related]
6. L-type calcium channels in type I cells of the rat carotid body. Fieber LA; McCleskey EW J Neurophysiol; 1993 Oct; 70(4):1378-84. PubMed ID: 7506754 [TBL] [Abstract][Full Text] [Related]
7. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder. Somogyi GT; Zernova GV; Tanowitz M; de Groat WC J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426 [TBL] [Abstract][Full Text] [Related]
9. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line. Kasai H; Neher E J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634 [TBL] [Abstract][Full Text] [Related]
10. Modulation of the dihydropyridine-insensitive Ca2+ influx by 8-bromo-guanosine-3':5'-monophosphate, cyclic (8-Br-cGMP) in bovine adrenal chromaffin cells. Rodriguez-Pascual F; Miras-Portugal MT; Torres M Neurosci Lett; 1994 Oct; 180(2):269-72. PubMed ID: 7535409 [TBL] [Abstract][Full Text] [Related]
11. Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. Brown AM; Schwindt PC; Crill WE J Neurophysiol; 1993 Oct; 70(4):1530-43. PubMed ID: 7506757 [TBL] [Abstract][Full Text] [Related]
12. Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells. Li BS; Veeranna ; Grant P; Pant HC Brain Res Mol Brain Res; 1999 Jun; 70(1):84-91. PubMed ID: 10381546 [TBL] [Abstract][Full Text] [Related]
13. Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. Stea A; Jackson A; Macintyre L; Nurse CA J Neurosci; 1995 Mar; 15(3 Pt 2):2192-202. PubMed ID: 7891161 [TBL] [Abstract][Full Text] [Related]
14. Identification of the single channels that underlie the N-type and L-type calcium currents in bullfrog sympathetic neurons. Elmslie KS J Neurosci; 1997 Apr; 17(8):2658-68. PubMed ID: 9092587 [TBL] [Abstract][Full Text] [Related]
15. Activation of dihydropyridine sensitive Ca2+ channels in rat hippocampal neurons in culture by parathyroid hormone. Hirasawa T; Nakamura T; Morita M; Ezawa I; Miyakawa H; Kudo Y Neurosci Lett; 1998 Nov; 256(3):139-42. PubMed ID: 9855359 [TBL] [Abstract][Full Text] [Related]
16. Effects of N- and L-type calcium channel antagonists and (+/-)-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. O'Farrell M; Ziogas J; Marley PD Br J Pharmacol; 1997 Jun; 121(3):381-8. PubMed ID: 9179377 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous calcium currents and transmitter release in cultured mouse spinal cord and dorsal root ganglion neurons. Yu C; Lin PX; Fitzgerald S; Nelson P J Neurophysiol; 1992 Mar; 67(3):561-75. PubMed ID: 1374458 [TBL] [Abstract][Full Text] [Related]
18. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Peers C Neurosci Lett; 1990 Nov; 119(2):253-6. PubMed ID: 1704113 [TBL] [Abstract][Full Text] [Related]
19. Calcium channels of cultured rat glomus cells in normoxia and acute hypoxia. Jiang RG; Eyzaguirre C Brain Res; 2005 Jan; 1031(1):56-66. PubMed ID: 15621012 [TBL] [Abstract][Full Text] [Related]
20. P-type calcium channels in rat neocortical neurones. Brown AM; Sayer RJ; Schwindt PC; Crill WE J Physiol; 1994 Mar; 475(2):197-205. PubMed ID: 7517449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]