BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9030552)

  • 1. On the mechanism of D-amino acid oxidase. Structure/linear free energy correlations and deuterium kinetic isotope effects using substituted phenylglycines.
    Pollegioni L; Blodig W; Ghisla S
    J Biol Chem; 1997 Feb; 272(8):4924-34. PubMed ID: 9030552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH and kinetic isotope effects in d-amino acid oxidase catalysis.
    Harris CM; Pollegioni L; Ghisla S
    Eur J Biochem; 2001 Nov; 268(21):5504-20. PubMed ID: 11683874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis.
    Pollegioni L; Langkau B; Tischer W; Ghisla S; Pilone MS
    J Biol Chem; 1993 Jul; 268(19):13850-7. PubMed ID: 8100225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism.
    Denu JM; Fitzpatrick PF
    Biochemistry; 1994 Apr; 33(13):4001-7. PubMed ID: 7908225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase.
    Denu JM; Fitzpatrick PF
    Biochemistry; 1992 Sep; 31(35):8207-15. PubMed ID: 1356021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic mechanism of D-amino acid oxidase with D-alpha-aminobutyrate as substrate. Effect of enzyme concentration on the kinetics.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Nov; 257(21):12916-23. PubMed ID: 6127341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects.
    Welsh KM; Creighton DJ; Klinman JP
    Biochemistry; 1980 May; 19(10):2005-16. PubMed ID: 6990968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH and kinetic isotope effects on the oxidative half-reaction of D-amino-acid oxidase.
    Denu JM; Fitzpatrick PF
    J Biol Chem; 1994 May; 269(21):15054-9. PubMed ID: 7910822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols.
    Klinman JP
    Biochemistry; 1976 May; 15(9):2018-26. PubMed ID: 773429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human erythrocyte glutathione reductase: chemical mechanism and structure of the transition state for hydride transfer.
    Sweet WL; Blanchard JS
    Biochemistry; 1991 Sep; 30(35):8702-9. PubMed ID: 1888731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism.
    Miller SM; Klinman JP
    Biochemistry; 1985 Apr; 24(9):2114-27. PubMed ID: 3995006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.