BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 9030574)

  • 1. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A.
    Bagu JR; Sykes BD; Craig MM; Holmes CF
    J Biol Chem; 1997 Feb; 272(8):5087-97. PubMed ID: 9030574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationships of microcystins, liver tumor promoters, in interaction with protein phosphatase.
    Nishiwaki-Matsushima R; Nishiwaki S; Ohta T; Yoshizawa S; Suganuma M; Harada K; Watanabe MF; Fujiki H
    Jpn J Cancer Res; 1991 Sep; 82(9):993-6. PubMed ID: 1657848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncompetitive Chromogenic Lateral-Flow Immunoassay for Simultaneous Detection of Microcystins and Nodularin.
    Akter S; Kustila T; Leivo J; Muralitharan G; Vehniäinen M; Lamminmäki U
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31216673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcystin-LR-induced epithelial-mesenchymal transition-like cells acquire resistance to multi-toxins.
    Takumi S; Tomioka M; Yunoki Y; Eto R; Komatsu Y; Shiozaki K; Komatsu M
    Toxicon; 2024 Feb; 238():107592. PubMed ID: 38163460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.
    Yang J; Roe SM; Cliff MJ; Williams MA; Ladbury JE; Cohen PT; Barford D
    EMBO J; 2005 Jan; 24(1):1-10. PubMed ID: 15577939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division.
    Máthé C; Bóka K; Kónya Z; Erdődi F; Vasas G; Freytag C; Garda T
    Chemosphere; 2024 Jun; 358():142125. PubMed ID: 38670509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic evidence for the early evolution of microcystin synthesis.
    Rantala A; Fewer DP; Hisbergues M; Rouhiainen L; Vaitomaa J; Börner T; Sivonen K
    Proc Natl Acad Sci U S A; 2004 Jan; 101(2):568-73. PubMed ID: 14701903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-negligible inhibition effect of microcystin-LR biodegradation products target to protein phosphatase 2A.
    Yu H; Fu C; Li M; Zong W
    Environ Pollut; 2024 Mar; 345():123491. PubMed ID: 38346637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health?
    Manganelli M; Testai E; Tazart Z; Scardala S; Codd GA
    Microorganisms; 2023 Mar; 11(4):. PubMed ID: 37110295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review and assessment of cyanobacterial toxins as cardiovascular health hazards.
    Svirčev Z; Chen L; Sántha K; Drobac Backović D; Šušak S; Vulin A; Palanački Malešević T; Codd GA; Meriluoto J
    Arch Toxicol; 2022 Nov; 96(11):2829-2863. PubMed ID: 35997789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Diversity, Characterization and Toxicology of Microcystins.
    Bouaïcha N; Miles CO; Beach DG; Labidi Z; Djabri A; Benayache NY; Nguyen-Quang T
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIMAP inhibits endothelial myosin light chain phosphatase by competing with MYPT1 for the catalytic protein phosphatase 1 subunit PP1cβ.
    Wang X; Obeidat M; Li L; Pasarj P; Aburahess S; Holmes CFB; Ballermann BJ
    J Biol Chem; 2019 Sep; 294(36):13280-13291. PubMed ID: 31315927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histopathological Evaluation of the Exposure by Cyanobacteria Cultive Containing [d-Leu¹]Microcystin-LR on
    Rodrigues Pires Júnior O; de Oliveira NB; Bosque RJ; Nice Ferreira MF; Morais Aurélio da Silva V; Martins Magalhães AC; Correia de Santana CJ; de Souza Castro M
    Toxins (Basel); 2018 Aug; 10(8):. PubMed ID: 30082615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the Role of
    Qu J; Shen L; Zhao M; Li W; Jia C; Zhu H; Zhang Q
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30041444
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of toxic Microcystis aeruginosa on the silver carp Hypophthalmichtys molitrix revealed by hepatic RNA-seq and miRNA-seq.
    Hu M; Qu X; Pan L; Fu C; Jia P; Liu Q; Wang Y
    Sci Rep; 2017 Sep; 7(1):10456. PubMed ID: 28874710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects.
    Singh R; Parihar P; Singh M; Bajguz A; Kumar J; Singh S; Singh VP; Prasad SM
    Front Microbiol; 2017; 8():515. PubMed ID: 28487674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of Microcystins from the Cyanobacterium Planktothrix rubescens Strain No80.
    Niedermeyer TH; Schmieder P; Kurmayer R
    Nat Prod Bioprospect; 2014 Feb; 4(1):37-45. PubMed ID: 24660135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells.
    Niedermeyer TH; Daily A; Swiatecka-Hagenbruch M; Moscow JA
    PLoS One; 2014; 9(3):e91476. PubMed ID: 24614281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural products from the Lithistida: a review of the literature since 2000.
    Winder PL; Pomponi SA; Wright AE
    Mar Drugs; 2011 Dec; 9(12):2643-2682. PubMed ID: 22363244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and impact of prokaryotic toxins on aquatic environments: a review.
    Valério E; Chaves S; Tenreiro R
    Toxins (Basel); 2010 Oct; 2(10):2359-410. PubMed ID: 22069558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.