These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9030608)
1. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. Zharkov DO; Rieger RA; Iden CR; Grollman AP J Biol Chem; 1997 Feb; 272(8):5335-41. PubMed ID: 9030608 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: role of K155 in substrate binding and product release. Rabow L; Venkataraman R; Kow YW Prog Nucleic Acid Res Mol Biol; 2001; 68():223-34. PubMed ID: 11554299 [TBL] [Abstract][Full Text] [Related]
3. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein. Sidorkina OM; Laval J J Biol Chem; 2000 Apr; 275(14):9924-9. PubMed ID: 10744666 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. Boiteux S; O'Connor TR; Lederer F; Gouyette A; Laval J J Biol Chem; 1990 Mar; 265(7):3916-22. PubMed ID: 1689309 [TBL] [Abstract][Full Text] [Related]
5. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. Tchou J; Bodepudi V; Shibutani S; Antoshechkin I; Miller J; Grollman AP; Johnson F J Biol Chem; 1994 May; 269(21):15318-24. PubMed ID: 7515054 [TBL] [Abstract][Full Text] [Related]
6. Excision of 5'-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. Graves RJ; Felzenszwalb I; Laval J; O'Connor TR J Biol Chem; 1992 Jul; 267(20):14429-35. PubMed ID: 1378443 [TBL] [Abstract][Full Text] [Related]
7. Assays for the repair of oxidative damage by formamidopyrimidine glycosylase (Fpg) and 8-oxoguanine DNA glycosylase (OGG-1). Watson AJ; Margison GP Methods Mol Biol; 2000; 152():17-32. PubMed ID: 10957965 [No Abstract] [Full Text] [Related]
8. AP lyases and dRPases: commonality of mechanism. Piersen CE; McCullough AK; Lloyd RS Mutat Res; 2000 Feb; 459(1):43-53. PubMed ID: 10677682 [TBL] [Abstract][Full Text] [Related]
9. Function of the zinc finger in Escherichia coli Fpg protein. Tchou J; Michaels ML; Miller JH; Grollman AP J Biol Chem; 1993 Dec; 268(35):26738-44. PubMed ID: 8253809 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of a novel UV lesion-specific DNA glycosylase/AP lyase from Bacillus sphaericus. Vasquez DA; Nyaga SG; Lloyd RS Mutat Res; 2000 May; 459(4):307-16. PubMed ID: 10844244 [TBL] [Abstract][Full Text] [Related]
11. Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide. Hilbert TP; Boorstein RJ; Kung HC; Bolton PH; Xing D; Cunningham RP; Teebor GW Biochemistry; 1996 Feb; 35(8):2505-11. PubMed ID: 8611553 [TBL] [Abstract][Full Text] [Related]
12. The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. Tchou J; Grollman AP J Biol Chem; 1995 May; 270(19):11671-7. PubMed ID: 7744806 [TBL] [Abstract][Full Text] [Related]
13. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines. Dherin C; Dizdaroglu M; Doerflinger H; Boiteux S; Radicella JP Nucleic Acids Res; 2000 Dec; 28(23):4583-92. PubMed ID: 11095666 [TBL] [Abstract][Full Text] [Related]
14. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. Pope MA; Porello SL; David SS J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995 [TBL] [Abstract][Full Text] [Related]
15. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. Harrison L; Hatahet Z; Wallace SS J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822 [TBL] [Abstract][Full Text] [Related]
16. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase. Lavrukhin OV; Lloyd RS Biochemistry; 2000 Dec; 39(49):15266-71. PubMed ID: 11106507 [TBL] [Abstract][Full Text] [Related]
17. Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates. Fedorova OS; Nevinsky GA; Koval VV; Ishchenko AA; Vasilenko NL; Douglas KT Biochemistry; 2002 Feb; 41(5):1520-8. PubMed ID: 11814345 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Aburatani H; Hippo Y; Ishida T; Takashima R; Matsuba C; Kodama T; Takao M; Yasui A; Yamamoto K; Asano M Cancer Res; 1997 Jun; 57(11):2151-6. PubMed ID: 9187114 [TBL] [Abstract][Full Text] [Related]
19. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. Sun B; Latham KA; Dodson ML; Lloyd RS J Biol Chem; 1995 Aug; 270(33):19501-8. PubMed ID: 7642635 [TBL] [Abstract][Full Text] [Related]
20. A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity. Williams SD; David SS Biochemistry; 2000 Aug; 39(33):10098-109. PubMed ID: 10955998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]