BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9030757)

  • 1. Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles.
    Etzold C; Deckers-Hebestreit G; Altendorf K
    Eur J Biochem; 1997 Jan; 243(1-2):336-43. PubMed ID: 9030757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Jan; 27(1):335-40. PubMed ID: 2894847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP synthesis catalyzed by the ATP synthase of Escherichia coli reconstituted into liposomes.
    Fischer S; Etzold C; Turina P; Deckers-Hebestreit G; Altendorf K; Gräber P
    Eur J Biochem; 1994 Oct; 225(1):167-72. PubMed ID: 7925434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-driven ATP synthesis by beef heart mitochondrial F0F1-ATPase.
    Knox BE; Tsong TY
    J Biol Chem; 1984 Apr; 259(8):4757-63. PubMed ID: 6232268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-reconstitution studies with polypeptides of Escherichia coli and bovine heart mitochondrial F0F1 ATP synthase.
    Zanotti F; Guerrieri F; Deckers-Hebestreit G; Fiermonte M; Altendorf K; Papa S
    Eur J Biochem; 1994 Jun; 222(3):733-41. PubMed ID: 8026487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration.
    Trchounian A; Ohanjanyan Y; Bagramyan K; Vardanian V; Zakharyan E; Vassilian A; Davtian M
    Biosci Rep; 1998 Jun; 18(3):143-54. PubMed ID: 9798786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide.
    Toei M; Noji H
    J Biol Chem; 2013 Sep; 288(36):25717-25726. PubMed ID: 23893417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase.
    Pérez JA; Ferguson SJ
    Biochemistry; 1990 Nov; 29(46):10503-18. PubMed ID: 2148690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP synthesis by F0F1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition.
    Bald D; Amano T; Muneyuki E; Pitard B; Rigaud JL; Kruip J; Hisabori T; Yoshida M; Shibata M
    J Biol Chem; 1998 Jan; 273(2):865-70. PubMed ID: 9422743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase.
    Hochstein LI
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis.
    Masaike T; Suzuki T; Tsunoda SP; Konno H; Yoshida M
    Biochem Biophys Res Commun; 2006 Apr; 342(3):800-7. PubMed ID: 16517239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation.
    Trchounian A
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1051-7. PubMed ID: 14985119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP synthesis by purified ATP-synthase from beef heart mitochondria after coreconstitution with bacteriorhodopsin.
    Matuschka S; Zwicker K; Nawroth T; Zimmer G
    Arch Biochem Biophys; 1995 Sep; 322(1):135-42. PubMed ID: 7574667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F0 and F1 parts of ATP synthases from Clostridium thermoautotrophicum and Escherichia coli are not functionally compatible.
    Das A; Ljungdahl LG
    FEBS Lett; 1993 Feb; 317(1-2):17-21. PubMed ID: 8428627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-reconstitution of the F0F1-ATP synthases of chloroplasts and Escherichia coli with special emphasis on subunit delta.
    Engelbrecht S; Deckers-Hebestreit G; Altendorf K; Junge W
    Eur J Biochem; 1989 May; 181(2):485-91. PubMed ID: 2523802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli.
    Perlin DS; San Francisco MJ; Slayman CW; Rosen BP
    Arch Biochem Biophys; 1986 Jul; 248(1):53-61. PubMed ID: 2425739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase.
    Hamasur B; Glaser E
    Eur J Biochem; 1992 Apr; 205(1):409-16. PubMed ID: 1313368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase.
    Valiyaveetil FI; Fillingame RH
    J Biol Chem; 1997 Dec; 272(51):32635-41. PubMed ID: 9405480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.