BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9031281)

  • 1. In vivo effect of hydroxyl radical scavenger on methylguanidine production from creatinine.
    Yokozawa T; Fujitsuka N; Oura H; Ienaga K; Nakamura K
    Nephron; 1997; 75(1):103-5. PubMed ID: 9031281
    [No Abstract]   [Full Text] [Related]  

  • 2. Lead-induced hypertension. III. Increased hydroxyl radical production.
    Ding Y; Gonick HC; Vaziri ND; Liang K; Wei L
    Am J Hypertens; 2001 Feb; 14(2):169-73. PubMed ID: 11243309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urinary excretion of creatol, an in vivo biomarker of hydroxyl radical, in patients with chronic renal failure.
    Ienaga K; Nakamura K; Fujisawa T; Fukunaga Y; Nihei H; Narita M; Tomino Y; Sanaka T; Aoyagi K; Nakano K; Koide H
    Ren Fail; 2007; 29(3):279-83. PubMed ID: 17497440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Products of creatinine with hydroxyl radical as a useful marker of oxidative stress in vivo.
    Aoyagi K; Nagase S; Koyama A; Narita M; Tojo S
    Methods Mol Biol; 1998; 108():157-64. PubMed ID: 9921526
    [No Abstract]   [Full Text] [Related]  

  • 5. Major role of hydroxyl radical in the conversion of creatinine to creatol.
    Fujitsuka N; Yokozawa T; Oura H; Nakamura K; Ienaga K
    Nephron; 1994; 68(2):280-1. PubMed ID: 7830877
    [No Abstract]   [Full Text] [Related]  

  • 6. Thiourea and dimethylthiourea inhibit peroxynitrite-dependent damage: nonspecificity as hydroxyl radical scavengers.
    Whiteman M; Halliwell B
    Free Radic Biol Med; 1997; 22(7):1309-12. PubMed ID: 9098107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confirmation that magnesium lithospermate B has a hydroxyl radical-scavenging action.
    Yokozawa T; Chung HY; Dong E; Oura H
    Exp Toxicol Pathol; 1995 Nov; 47(5):341-4. PubMed ID: 8871065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased serum antioxidant activity of hemodialysis patients demonstrated by methylguanidine synthesis and microsomal lipid peroxidation.
    Nagase S; Aoyagi K; Hirayama A; Gotoh M; Ueda A; Tomida C; Kikuchi H; Takemura K; Koyama A
    Nephron; 1996; 74(3):555-60. PubMed ID: 8938680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of creatinine, creatol and methylguanidine on renal function.
    Yokozawa T; Oura H; Ienaga K; Nakamura K
    Nihon Jinzo Gakkai Shi; 1992 Sep; 34(9):973-7. PubMed ID: 1479734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of methylguanidine from creatinine via creatol by active oxygen species: analyses of the catabolism in vitro.
    Nakamura K; Ienaga K; Yokozawa T; Fujitsuka N; Oura H
    Nephron; 1991; 58(1):42-6. PubMed ID: 1649975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatol and chronic renal failure.
    Ienaga K; Nakamura K; Fukunaga Y; Nakano K; Kanatsuna T
    Kidney Int Suppl; 1994 Nov; 47():S22-4. PubMed ID: 7869666
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes in serum levels of creatol and methylguanidine in renal injury induced by lipid peroxide produced by vitamin E deficiency and GSH depletion in rats.
    Ozasa H; Watanabe T; Nakamura K; Fukunaga Y; Ienaga K; Hagiwara K
    Nephron; 1997; 75(2):224-9. PubMed ID: 9041546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
    Santos NA; Bezerra CS; Martins NM; Curti C; Bianchi ML; Santos AC
    Cancer Chemother Pharmacol; 2008 Jan; 61(1):145-55. PubMed ID: 17396264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily hydroxyl radical scavenging capacity of mammals.
    Ienaga K; Hum Park C; Yokozawa T
    Drug Discov Ther; 2014 Apr; 8(2):71-5. PubMed ID: 24815581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.
    Baek SM; Kwon CH; Kim JH; Woo JS; Jung JS; Kim YK
    J Lab Clin Med; 2003 Sep; 142(3):178-86. PubMed ID: 14532906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of creatol, a hydroxyl radical adduct of creatinine and its increase by puromycin aminonucleoside in isolated rat hepatocytes.
    Aoyagi K; Akiyama K; Kuzure Y; Takemura K; Nagase S; Ienaga K; Nakamura K; Koyama A; Narita M
    Free Radic Res; 1998 Sep; 29(3):221-6. PubMed ID: 9802553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arginine or creatinine administration on the urinary excretion of methylguanidine.
    Orita Y; Tsubakihara Y; Ando A; Nakata K; Takamitsu Y; Fukuhara Y; Abe H
    Nephron; 1978; 22(4-6):328-36. PubMed ID: 740094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of peroxynitrite-evoked acetylcholine release by hydroxyl radical scavengers from mouse cerebral cortical neurons.
    Hara A; Katsura M; Higo A; Hibino Y; Ohkuma S
    Life Sci; 1998; 63(10):827-33. PubMed ID: 9734702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial dysfunction and increased responses to renal nerve stimulation in rat kidneys during rhabdomyolysis-induced acute renal failure: role of hydroxyl radical.
    Cil O; Ertunc M; Gucer KS; Ozaltin F; Iskit AB; Onur R
    Ren Fail; 2012; 34(2):211-20. PubMed ID: 22229548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of hydroxyl radical to the production of methylguanidine from creatinine.
    Yokozawa T; Fujitsuka N; Oura H
    Nephron; 1991; 59(4):662-3. PubMed ID: 1662783
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.