These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9031728)
1. Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results. Mainil-Varlet P; Rahn B; Gogolewski S Biomaterials; 1997 Feb; 18(3):257-66. PubMed ID: 9031728 [TBL] [Abstract][Full Text] [Related]
2. Effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. 2. Poly(L/D-lactide) and poly(L/DL-lactide). Gogolewski S; Mainil-Varlet P Biomaterials; 1997 Feb; 18(3):251-5. PubMed ID: 9031727 [TBL] [Abstract][Full Text] [Related]
3. Positional stability of polylactide pins with various surface textures in sheep tibia. Mainil-Varlet P; Cordey J; Gogolewski S J Biomed Mater Res; 1997 Mar; 34(3):351-9. PubMed ID: 9086405 [TBL] [Abstract][Full Text] [Related]
4. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes. Ignatius AA; Betz O; Augat P; Claes LE J Biomed Mater Res; 2001; 58(6):701-9. PubMed ID: 11745524 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide. Ferguson S; Wahl D; Gogolewski S J Biomed Mater Res; 1996 Apr; 30(4):543-51. PubMed ID: 8847363 [TBL] [Abstract][Full Text] [Related]
6. Influence of fluoride in poly(d,l-lactide)/apatite composites on bone formation. Luo X; Barbieri D; Passanisi G; Yuan H; de Bruijn JD J Biomed Mater Res B Appl Biomater; 2015 May; 103(4):841-52. PubMed ID: 25132540 [TBL] [Abstract][Full Text] [Related]
7. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Shikinami Y; Okuno M Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712 [TBL] [Abstract][Full Text] [Related]
8. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. Mainil-Varlet P; Curtis R; Gogolewski S J Biomed Mater Res; 1997 Sep; 36(3):360-80. PubMed ID: 9260107 [TBL] [Abstract][Full Text] [Related]
9. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. Gogolewski S; Mainil-Varlet P; Dillon JG J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500 [TBL] [Abstract][Full Text] [Related]
10. Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process? Gogolewski S; Pineda L; Büsing CM Biomaterials; 2000 Dec; 21(24):2513-20. PubMed ID: 11071601 [TBL] [Abstract][Full Text] [Related]
11. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. Suuronen R; Pohjonen T; Hietanen J; Lindqvist C J Oral Maxillofac Surg; 1998 May; 56(5):604-14; discussion 614-5. PubMed ID: 9590343 [TBL] [Abstract][Full Text] [Related]
12. The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide). Gogolewski S; Mainil-Varlet P Biomaterials; 1996 Mar; 17(5):523-8. PubMed ID: 8991484 [TBL] [Abstract][Full Text] [Related]
13. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). Gogolewski S; Jovanovic M; Perren SM; Dillon JG; Hughes MK J Biomed Mater Res; 1993 Sep; 27(9):1135-48. PubMed ID: 8126012 [TBL] [Abstract][Full Text] [Related]
14. [In vivo study of degradation of poly-(D,L-) lactide and poly-(L-lactide-co-glycolide) osteosynthesis material]. Heidemann W; Fischer JH; Koebke J; Bussmann C; Gerlach KL Mund Kiefer Gesichtschir; 2003 Sep; 7(5):283-8. PubMed ID: 14551804 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. Hasegawa S; Tamura J; Neo M; Goto K; Shikinami Y; Saito M; Kita M; Nakamura T J Biomed Mater Res A; 2005 Dec; 75(3):567-79. PubMed ID: 16094665 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation. Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619 [TBL] [Abstract][Full Text] [Related]
17. Regeneration of diaphyseal bone defects using resorbable poly(L/DL-lactide) and poly(D-lactide) membranes in the Yucatan pig model. Meinig RP; Buesing CM; Helm J; Gogolewski S J Orthop Trauma; 1997 Nov; 11(8):551-8. PubMed ID: 9415860 [TBL] [Abstract][Full Text] [Related]
18. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Shikinami Y; Matsusue Y; Nakamura T Biomaterials; 2005 Sep; 26(27):5542-51. PubMed ID: 15860210 [TBL] [Abstract][Full Text] [Related]
19. Tissue response to partially in vitro predegraded poly-L-lactide implants. De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152 [TBL] [Abstract][Full Text] [Related]
20. Bone bonding ability of a new biodegradable composite for internal fixation of bone fractures. Furukawa T; Matsusue Y; Yasunaga T; Nakagawa Y; Shikinami Y; Okuno M; Nakamura T Clin Orthop Relat Res; 2000 Oct; (379):247-58. PubMed ID: 11039814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]