BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 9031751)

  • 1. Functional GABAA receptors on rat vagal afferent neurones.
    Ashworth-Preece M; Krstew E; Jarrott B; Lawrence AJ
    Br J Pharmacol; 1997 Feb; 120(3):469-75. PubMed ID: 9031751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dopamine D2 receptors on rat vagal afferent neurones.
    Lawrence AJ; Krstew E; Jarrott B
    Br J Pharmacol; 1995 Apr; 114(7):1329-34. PubMed ID: 7606337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic effects on nucleus tractus solitarius neurons receiving gastric vagal inputs.
    Yuan CS; Liu D; Attele AS
    J Pharmacol Exp Ther; 1998 Aug; 286(2):736-41. PubMed ID: 9694928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAA receptor-mediated IPSCs in rat thalamic sensory nuclei: patterns of discharge and tonic modulation by GABAB autoreceptors.
    Le Feuvre Y; Fricker D; Leresche N
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):91-104. PubMed ID: 9234199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic adenosine A2a receptors on soma and central terminals of rat vagal afferent neurons.
    Castillo-Meléndez M; Krstew E; Lawrence AJ; Jarrott B
    Brain Res; 1994 Jul; 652(1):137-44. PubMed ID: 7953710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinic acetylcholine receptors in the rat and primate nucleus tractus solitarius and on rat and human inferior vagal (nodose) ganglia: evidence from in vivo microdialysis and [125I]alpha-bungarotoxin autoradiography.
    Ashworth-Preece M; Jarrott B; Lawrence AJ
    Neuroscience; 1998 Apr; 83(4):1113-22. PubMed ID: 9502250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of vesicular glutamate transporters by vagal afferent terminals in rat nucleus of the solitary tract: projections from the heart preferentially express vesicular glutamate transporter 1.
    Corbett EK; Sinfield JK; McWilliam PN; Deuchars J; Batten TF
    Neuroscience; 2005; 135(1):133-45. PubMed ID: 16084661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence of functional vasopressin V1 receptors in rat vagal afferent neurones.
    Gao X; Phillips PA; Widdop RE; Trinder D; Jarrott B; Johnston CI
    Neurosci Lett; 1992 Sep; 145(1):79-82. PubMed ID: 1461573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differential antagonism by bicuculline and SR95531 of pentobarbitone-induced currents in cultured hippocampal neurons.
    Uchida I; Cestari IN; Yang J
    Eur J Pharmacol; 1996 Jun; 307(1):89-96. PubMed ID: 8831109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple types of GABAA receptors mediate inhibition in brain stem parasympathetic cardiac neurons in the nucleus ambiguus.
    Bouairi E; Kamendi H; Wang X; Gorini C; Mendelowitz D
    J Neurophysiol; 2006 Dec; 96(6):3266-72. PubMed ID: 16914614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative autoradiography of angiotensin II receptors in the rat solitary-vagal area: effects of nodose ganglionectomy or sinoaortic denervation.
    Healy DP; Rettig R; Nguyen T; Printz MP
    Brain Res; 1989 Apr; 484(1-2):1-12. PubMed ID: 2713673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both GABAA and GABAB receptors mediate vagal inhibition in nucleus tractus solitarii neurones in anaesthetized rats.
    Wang Y; Jordan D; Ramage AG
    Auton Neurosci; 2010 Jan; 152(1-2):75-83. PubMed ID: 19926533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal afferent control of opioidergic effects in rat brainstem circuits.
    Browning KN; Zheng Z; Gettys TW; Travagli RA
    J Physiol; 2006 Sep; 575(Pt 3):761-76. PubMed ID: 16825311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of luteinizing hormone release by gamma-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels.
    Virmani MA; Stojilković SS; Catt KJ
    Endocrinology; 1990 May; 126(5):2499-505. PubMed ID: 2158428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA(B)R expressed on vagal afferent neurones inhibit gastric mechanosensitivity in ferret proximal stomach.
    Smid SD; Young RL; Cooper NJ; Blackshaw LA
    Am J Physiol Gastrointest Liver Physiol; 2001 Dec; 281(6):G1494-501. PubMed ID: 11705755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation.
    Kemp JA; Marshall GR; Woodruff GN
    Br J Pharmacol; 1986 Apr; 87(4):677-84. PubMed ID: 3011168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA(A) receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord.
    Lao L; Marvizón JC
    Neuroscience; 2005; 130(4):1013-27. PubMed ID: 15652997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological study of SR 42641, a novel aminopyridazine derivative of GABA: antagonist properties and receptor selectivity of GABAA versus GABAB responses.
    Desarmenien M; Desaulles E; Feltz P; Hamann M
    Br J Pharmacol; 1987 Feb; 90(2):287-98. PubMed ID: 2435350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick.
    Hyson RL; Reyes AD; Rubel EW
    Brain Res; 1995 Apr; 677(1):117-26. PubMed ID: 7606455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.