These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 9032074)
1. The open conformation of a Pseudomonas lipase. Schrag JD; Li Y; Cygler M; Lang D; Burgdorf T; Hecht HJ; Schmid R; Schomburg D; Rydel TJ; Oliver JD; Strickland LC; Dunaway CM; Larson SB; Day J; McPherson A Structure; 1997 Feb; 5(2):187-202. PubMed ID: 9032074 [TBL] [Abstract][Full Text] [Related]
2. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Kim KK; Song HK; Shin DH; Hwang KY; Suh SW Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. Lang D; Hofmann B; Haalck L; Hecht HJ; Spener F; Schmid RD; Schomburg D J Mol Biol; 1996 Jun; 259(4):704-17. PubMed ID: 8683577 [TBL] [Abstract][Full Text] [Related]
5. Computational studies of essential dynamics of Pseudomonas cepacia lipase. Lee J; Suh SW; Shin S J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650 [TBL] [Abstract][Full Text] [Related]
6. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent inhibitors reveal solvent-dependent micropolarity in the lipid binding sites of lipases. Oskolkova OV; Hermetter A Biochim Biophys Acta; 2002 May; 1597(1):60-6. PubMed ID: 12009403 [TBL] [Abstract][Full Text] [Related]
8. Insights into interfacial activation from an open structure of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Bouthillier F; Smith P; Harrison D; Rubin B; Cygler M J Biol Chem; 1993 Jun; 268(17):12843-7. PubMed ID: 8509417 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence. Graupner M; Haalck L; Spener F; Lindner H; Glatter O; Paltauf F; Hermetter A Biophys J; 1999 Jul; 77(1):493-504. PubMed ID: 10388774 [TBL] [Abstract][Full Text] [Related]
10. X-ray crystallographic and MD simulation studies on the mechanism of interfacial activation of a family I.3 lipase with two lids. Angkawidjaja C; Matsumura H; Koga Y; Takano K; Kanaya S J Mol Biol; 2010 Jul; 400(1):82-95. PubMed ID: 20438738 [TBL] [Abstract][Full Text] [Related]
11. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols. Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica. Jin Q; Jia G; Zhang Y; Yang Q; Li C Langmuir; 2011 Oct; 27(19):12016-24. PubMed ID: 21851086 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the structure of Pseudomonas glumae lipase. Noble ME; Cleasby A; Johnson LN; Egmond MR; Frenken LG Protein Eng; 1994 Apr; 7(4):559-62. PubMed ID: 8029212 [TBL] [Abstract][Full Text] [Related]
14. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures. Cheng M; Angkawidjaja C; Koga Y; Kanaya S FEBS J; 2012 Oct; 279(19):3727-3737. PubMed ID: 22863357 [TBL] [Abstract][Full Text] [Related]
15. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Uppenberg J; Hansen MT; Patkar S; Jones TA Structure; 1994 Apr; 2(4):293-308. PubMed ID: 8087556 [TBL] [Abstract][Full Text] [Related]
16. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Brzozowski AM; Derewenda U; Derewenda ZS; Dodson GG; Lawson DM; Turkenburg JP; Bjorkling F; Huge-Jensen B; Patkar SA; Thim L Nature; 1991 Jun; 351(6326):491-4. PubMed ID: 2046751 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. Noble ME; Cleasby A; Johnson LN; Egmond MR; Frenken LG FEBS Lett; 1993 Sep; 331(1-2):123-8. PubMed ID: 8405390 [TBL] [Abstract][Full Text] [Related]
18. Bacterial lipases. Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464 [TBL] [Abstract][Full Text] [Related]
19. Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors. Mateos-Diaz E; Amara S; Roussel A; Longhi S; Cambillau C; Carrière F Methods Enzymol; 2017; 583():279-307. PubMed ID: 28063495 [TBL] [Abstract][Full Text] [Related]
20. A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Withers-Martinez C; Carrière F; Verger R; Bourgeois D; Cambillau C Structure; 1996 Nov; 4(11):1363-74. PubMed ID: 8939760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]