BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 9032080)

  • 1. Crystal structure of the dihaem cytochrome c4 from Pseudomonas stutzeri determined at 2.2A resolution.
    Kadziola A; Larsen S
    Structure; 1997 Feb; 5(2):203-16. PubMed ID: 9032080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution crystal structures of the solubilized domain of porcine cytochrome b5.
    Hirano Y; Kimura S; Tamada T
    Acta Crystallogr D Biol Crystallogr; 2015 Jul; 71(Pt 7):1572-81. PubMed ID: 26143928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis.
    Lowe EC; Bydder S; Hartshorne RS; Tape HL; Dridge EJ; Debieux CM; Paszkiewicz K; Singleton I; Lewis RJ; Santini JM; Richardson DJ; Butler CS
    J Biol Chem; 2010 Jun; 285(24):18433-42. PubMed ID: 20388716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a novel c7-type three-heme cytochrome domain from a multidomain cytochrome c polymer.
    Pokkuluri PR; Londer YY; Duke NE; Erickson J; Pessanha M; Salgueiro CA; Schiffer M
    Protein Sci; 2004 Jun; 13(6):1684-92. PubMed ID: 15133162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial cytochrome c1 is a collapsed di-heme cytochrome.
    Baymann F; Lebrun E; Nitschke W
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17737-40. PubMed ID: 15591339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4.
    Tomcová I; Branca RM; Bodó G; Bagyinka C; Smatanová IK
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Aug; 62(Pt 8):820-4. PubMed ID: 16880567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the
    Di Trani JM; Gheorghita AA; Turner M; Brzezinski P; Ädelroth P; Vahidi S; Howell PL; Rubinstein JL
    Proc Natl Acad Sci U S A; 2023 Oct; 120(40):e2307093120. PubMed ID: 37751552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreduction and validation of haem-ligand intermediate states in protein crystals by
    Kekilli D; Moreno-Chicano T; Chaplin AK; Horrell S; Dworkowski FSN; Worrall JAR; Strange RW; Hough MA
    IUCrJ; 2017 May; 4(Pt 3):263-270. PubMed ID: 28512573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA.
    Schmitt G; Birke J; Jendrossek D
    AMB Express; 2019 Oct; 9(1):166. PubMed ID: 31624946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and properties of AlgH from Pseudomonas aeruginosa.
    Urbauer JL; Cowley AB; Broussard HP; Niedermaier HT; Bieber Urbauer RJ
    Proteins; 2015 Jun; 83(6):1137-50. PubMed ID: 25857636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Mechanisms of
    Sanow S; Kuang W; Schaaf G; Huesgen P; Schurr U; Roessner U; Watt M; Arsova B
    Mol Plant Microbe Interact; 2023 Sep; 36(9):536-548. PubMed ID: 36989040
    [No Abstract]   [Full Text] [Related]  

  • 12. Highly malleable haem-binding site of the haemoprotein HasA permits stable accommodation of bulky tetraphenylporphycenes.
    Sakakibara E; Shisaka Y; Onoda H; Koga D; Xu N; Ono T; Hisaeda Y; Sugimoto H; Shiro Y; Watanabe Y; Shoji O
    RSC Adv; 2019 Jun; 9(32):18697-18702. PubMed ID: 35515244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protein that mobilizes the cofactor molecule haem for use in cells.
    Nature; 2022 Oct; ():. PubMed ID: 36261715
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrochemical and structural characterization of recombinant respiratory proteins of the acidophilic iron oxidizer
    Ullrich SR; Fuchs H; Ashworth-Güth C
    Front Microbiol; 2024; 15():1357152. PubMed ID: 38384274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the diheme cytochrome c
    Zhong F; Reik ME; Ragusa MJ; Pletneva EV
    J Inorg Biochem; 2024 Apr; 253():112496. PubMed ID: 38330683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the Interdomain Interface on Structural and Redox Properties of Multiheme Proteins.
    Zhong F; Albert T; Moënne-Loccoz P; Pletneva EV
    Inorg Chem; 2022 Dec; 61(51):20949-20963. PubMed ID: 36493379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and redox properties of the diheme electron carrier cytochrome c
    Carpenter JM; Zhong F; Ragusa MJ; Louro RO; Hogan DA; Pletneva EV
    J Inorg Biochem; 2020 Feb; 203():110889. PubMed ID: 31707335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Basis Behind Inability of Mitochondrial Holocytochrome c Synthase to Mature Bacterial Cytochromes: DEFINING A CRITICAL ROLE FOR CYTOCHROME c α HELIX-1.
    Babbitt SE; Hsu J; Kranz RG
    J Biol Chem; 2016 Aug; 291(34):17523-34. PubMed ID: 27387500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases.
    Larsen Ø; Karlsen OA
    Microbiologyopen; 2016 Apr; 5(2):254-67. PubMed ID: 26687591
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.