These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 9032681)
1. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice. Allard B; Rougier O J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681 [TBL] [Abstract][Full Text] [Related]
2. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH. Allard B; Lazdunski M; Rougier O J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of action of a K+ channel activator BRL 38227 on ATP-sensitive K+ channels in mouse skeletal muscle fibres. Hussain M; Wareham AC; Head SI J Physiol; 1994 Aug; 478 Pt 3(Pt 3):523-32. PubMed ID: 7965862 [TBL] [Abstract][Full Text] [Related]
4. A patch-clamp study of delayed rectifier currents in skeletal muscle of control and mdx mice. Hocherman SD; Bezanilla F J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):113-28. PubMed ID: 8735698 [TBL] [Abstract][Full Text] [Related]
5. Modulation of K+ channels by intracellular ATP in human neocortical neurons. Jiang C; Haddad GG J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601 [TBL] [Abstract][Full Text] [Related]
6. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes. Teramoto N; McMurray G; Brading AF Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697 [TBL] [Abstract][Full Text] [Related]
7. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Allard B; Lazdunski M Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200 [TBL] [Abstract][Full Text] [Related]
8. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
9. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres. Light PE; Cordeiro JM; French RJ Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312 [TBL] [Abstract][Full Text] [Related]
10. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of ATP-sensitive K+ channels of mouse skeletal muscle by disopyramide. Moser C; Hehl S; Neumcke B Eur J Pharmacol; 1995 Sep; 284(1-2):35-41. PubMed ID: 8549634 [TBL] [Abstract][Full Text] [Related]
12. Effects of tolbutamide on ATP-sensitive K+ channels from human right atrial cardiac myocytes. Zünkler BJ; Henning B; Ott T; Hildebrandt AG; Fleck E Pharmacol Toxicol; 1997 Feb; 80(2):69-75. PubMed ID: 9060037 [TBL] [Abstract][Full Text] [Related]
13. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block. Rusko J; Tanzi F; van Breemen C; Adams DJ J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364 [TBL] [Abstract][Full Text] [Related]
14. Activation of Ca2+-activated K+ channels by an increase in intracellular Ca2+ induced by depolarization of mouse skeletal muscle fibres. Jacquemond V; Allard B J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):93-102. PubMed ID: 9547384 [TBL] [Abstract][Full Text] [Related]
15. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell. Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521 [TBL] [Abstract][Full Text] [Related]
16. Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells. Zhang HL; Bolton TB Br J Pharmacol; 1996 May; 118(1):105-14. PubMed ID: 8733582 [TBL] [Abstract][Full Text] [Related]
17. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties. Tricarico D; Camerino DC Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056 [TBL] [Abstract][Full Text] [Related]
18. Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells. Katnik C; Adams DJ Am J Physiol; 1997 May; 272(5 Pt 2):H2507-11. PubMed ID: 9176323 [TBL] [Abstract][Full Text] [Related]
19. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Clapp LH Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838 [TBL] [Abstract][Full Text] [Related]
20. Intracellular Ca2+ changes and Ca2+-activated K+ channel activation induced by acetylcholine at the endplate of mouse skeletal muscle fibres. Allard B; Bernengo JC; Rougier O; Jacquemond V J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):337-49. PubMed ID: 8841995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]