These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9032696)

  • 1. Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum.
    Lowry JP; Fillenz M
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):497-501. PubMed ID: 9032696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relation between local cerebral blood flow and extracellular glucose concentration in rat striatum.
    Fillenz M; Lowry JP
    Exp Physiol; 1998 Mar; 83(2):233-8. PubMed ID: 9568483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between cerebral blood flow and extracellular glucose in rat striatum during mild hypoxia and hyperoxia.
    Lowry JP; Demestre M; Fillenz M
    Dev Neurosci; 1998; 20(1):52-8. PubMed ID: 9600390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of motor- and nonmotor-related neurons within the matrix-striosome organization of rat striatum.
    Trytek ES; White IM; Schroeder DM; Heidenreich BA; Rebec GV
    Brain Res; 1996 Jan; 707(2):221-7. PubMed ID: 8919299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors.
    Gramsbergen JB; Skjøth-Rasmussen J; Rasmussen C; Lambertsen KL
    J Neurosci Methods; 2004 Dec; 140(1-2):93-101. PubMed ID: 15589339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of brain tissue oxygen at a carbon past electrode can serve as an index of increases in regional cerebral blood flow.
    Lowry JP; Boutelle MG; Fillenz M
    J Neurosci Methods; 1997 Feb; 71(2):177-82. PubMed ID: 9128153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid changes in extracellular glucose levels and blood flow in the striatum of the freely moving rat.
    Fellows LK; Boutelle MG
    Brain Res; 1993 Feb; 604(1-2):225-31. PubMed ID: 8457850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow response to functional activation.
    Paulson OB; Hasselbalch SG; Rostrup E; Knudsen GM; Pelligrino D
    J Cereb Blood Flow Metab; 2010 Jan; 30(1):2-14. PubMed ID: 19738630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular glucose turnover in the striatum of unanaesthetized rats measured by quantitative microdialysis.
    Fray AE; Boutelle M; Fillenz M
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):721-6. PubMed ID: 9401977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia.
    Pulsinelli WA; Levy DE; Duffy TE
    Ann Neurol; 1982 May; 11(5):499-502. PubMed ID: 7103426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow and glucose utilization following opening of the blood-brain barrier and during maturation of the rat brain.
    Rapoport SI; Ohata M; London ED
    Fed Proc; 1981 Jun; 40(8):2322-5. PubMed ID: 7238913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology of ventromedial striatal neurons during movement.
    Patino P; Garcia-Munoz M; Freed CR
    Brain Res Bull; 1995; 37(5):481-6. PubMed ID: 7633896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the source of glucose in the extracellular compartment of the rat brain.
    Fillenz M; Lowry JP
    Dev Neurosci; 1998; 20(4-5):365-8. PubMed ID: 9778573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor.
    Lowry JP; O'Neill RD; Boutelle MG; Fillenz M
    J Neurochem; 1998 Jan; 70(1):391-6. PubMed ID: 9422386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of inhibition of neuronal nitric oxide synthase on NMDA-induced changes in cerebral blood flow and oxygen consumption.
    Chi OZ; Liu X; Weiss HR
    Exp Brain Res; 2003 Jan; 148(2):256-60. PubMed ID: 12520415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat.
    Madsen PL; Linde R; Hasselbalch SG; Paulson OB; Lassen NA
    J Cereb Blood Flow Metab; 1998 Jul; 18(7):742-8. PubMed ID: 9663504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task.
    Schmitzer-Torbert N; Redish AD
    J Neurophysiol; 2004 May; 91(5):2259-72. PubMed ID: 14736863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of brain energy metabolism in vivo using microelectrochemical sensors: the effects of anesthesia.
    Lowry JP; Fillenz M
    Bioelectrochemistry; 2001 Aug; 54(1):39-47. PubMed ID: 11506973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats.
    Chang JY; Chen L; Luo F; Shi LH; Woodward DJ
    Exp Brain Res; 2002 Jan; 142(1):67-80. PubMed ID: 11797085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex.
    Cowan RL; Wilson CJ
    J Neurophysiol; 1994 Jan; 71(1):17-32. PubMed ID: 8158226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.