BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9032762)

  • 1. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells.
    Gutiérrez-Martín CB; Ojcius DM; Hsia R; Hellio R; Bavoil PM; Dautry-Varsat A
    Microb Pathog; 1997 Jan; 22(1):47-57. PubMed ID: 9032762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells.
    Chen JC; Stephens RS
    Microb Pathog; 1997 Jan; 22(1):23-30. PubMed ID: 9032759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism.
    Prain CJ; Pearce JH
    J Gen Microbiol; 1989 Jul; 135(7):2107-23. PubMed ID: 2614396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface.
    Ting LM; Hsia RC; Haidaris CG; Bavoil PM
    Infect Immun; 1995 Sep; 63(9):3600-8. PubMed ID: 7642297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphic Membrane Protein 17G of
    Li X; Zuo Z; Wang Y; Hegemann JH; He C
    Front Immunol; 2021; 12():818487. PubMed ID: 35173712
    [No Abstract]   [Full Text] [Related]  

  • 7. Induction of apoptosis by Chlamydia psittaci and Chlamydia trachomatis infection in tissue culture cells.
    Gibellini D; Panaya R; Rumpianesi F
    Zentralbl Bakteriol; 1998 Jul; 288(1):35-43. PubMed ID: 9728403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci.
    Wu H; Wang C; Jiang C; Xie Y; Liu L; Song Y; Ma X; Wu Y
    Microbiol Res; 2016 Feb; 183():19-25. PubMed ID: 26805615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus.
    Kalmar I; Berndt A; Yin L; Chiers K; Sachse K; Vanrompay D
    Vet Immunol Immunopathol; 2015 Mar; 164(1-2):30-9. PubMed ID: 25638671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia-host cell interaction not only from a bird's eye view: some lessons from Chlamydia psittaci.
    Radomski N; Einenkel R; Müller A; Knittler MR
    FEBS Lett; 2016 Nov; 590(21):3920-3940. PubMed ID: 27397851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion.
    Rockey DD; Grosenbach D; Hruby DE; Peacock MG; Heinzen RA; Hackstadt T
    Mol Microbiol; 1997 Apr; 24(1):217-28. PubMed ID: 9140978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of chlamydial infections.
    Schachter J
    Pathol Immunopathol Res; 1989; 8(3-4):206-20. PubMed ID: 2671975
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of C. trachomatis attachment to eukaryotic host cells.
    Zhang JP; Stephens RS
    Cell; 1992 May; 69(5):861-9. PubMed ID: 1591780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo.
    Chen Y; Wang C; Mi J; Zhou Z; Wang J; Tang M; Yu J; Liu A; Wu Y
    Vet Microbiol; 2021 Apr; 255():108960. PubMed ID: 33667981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of inorganic ions from host cells infected with Chlamydia psittaci.
    Chang GT; Moulder JW
    Infect Immun; 1978 Mar; 19(3):827-32. PubMed ID: 640730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription of seven genes in a model of interferon‑γ-induced persistent Chlamydia psittaci infection.
    Chen Z; Chen L; Wang C; Yu J; Bai Q; Yu M; Song Y; Hu Y; Wu Y
    Mol Med Rep; 2017 Oct; 16(4):4835-4842. PubMed ID: 28765948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase chain reaction (PCR) detection of porcine Chlamydia trachomatis and ruminant Chlamydia psittaci serovar 1 DNA in formalin-fixed intestinal specimens from swine.
    Schiller I; Koesters R; Weilenmann R; Kaltenboeck B; Pospischil A
    Zentralbl Veterinarmed B; 1997 May; 44(3):185-91. PubMed ID: 9197211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding.
    Moelleken K; Hegemann JH
    Mol Microbiol; 2008 Jan; 67(2):403-19. PubMed ID: 18086188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellular ceramide transport protein CERT promotes Chlamydia psittaci infection and controls bacterial sphingolipid uptake.
    Koch-Edelmann S; Banhart S; Saied EM; Rose L; Aeberhard L; Laue M; Doellinger J; Arenz C; Heuer D
    Cell Microbiol; 2017 Oct; 19(10):. PubMed ID: 28544656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evidence to suggest pigeon-type Chlamydia psittaci in association with an equine foal loss.
    Jelocnik M; Jenkins C; O'Rourke B; Barnwell J; Polkinghorne A
    Transbound Emerg Dis; 2018 Jun; 65(3):911-915. PubMed ID: 29352509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.