These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
763 related articles for article (PubMed ID: 9032796)
1. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA; Bours J; Utikal KJ Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796 [TBL] [Abstract][Full Text] [Related]
2. Hydration properties of the molecular chaperone alpha-crystallin in the bovine lens. Babizhayev MA; Nikolayev GM; Goryachev SN; Bours J; Martin R Biochemistry (Mosc); 2003 Oct; 68(10):1145-55. PubMed ID: 14616086 [TBL] [Abstract][Full Text] [Related]
3. Crystallin profiles of calf and bovine lens microsections, stained for free sulfhydryl groups and proteins. Bours J; Ahrend MH; Hockwin O Lens Eye Toxic Res; 1990; 7(3-4):531-45. PubMed ID: 2100178 [TBL] [Abstract][Full Text] [Related]
4. Calf lens alpha-crystallin, a molecular chaperone, builds stable complexes with beta s- and gamma-crystallins. Bours J Ophthalmic Res; 1996; 28 Suppl 1():23-31. PubMed ID: 8727960 [TBL] [Abstract][Full Text] [Related]
5. Isotachophoresis and immunoelectrophoresis of water-soluble and -insoluble crystallins of the ageing bovine lens. Bours J Curr Eye Res; 1984 May; 3(5):691-7. PubMed ID: 6734250 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
7. NMR spin-echo studies of hydration properties of the molecular chaperone alpha-crystallin in the bovine lens. Babizhayev MA; Nikolayev GN; Goryachev SN; Bours J Biochim Biophys Acta; 2002 Jul; 1598(1-2):46-54. PubMed ID: 12147343 [TBL] [Abstract][Full Text] [Related]
8. Water-soluble and insoluble crystallins of the developing human fetal lens, analyzed by agarose/polyacrylamide thin-layer isoelectric focusing. Ahrend MH; Bours J; Födisch HJ Ophthalmic Res; 1987; 19(3):150-6. PubMed ID: 3658325 [TBL] [Abstract][Full Text] [Related]
9. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining. Bours J; Ahrend MH; Utikal KJ Ophthalmic Res; 1998; 30(4):233-43. PubMed ID: 9667054 [TBL] [Abstract][Full Text] [Related]
10. High-performance gel permeation chromatography of bovine eye lens proteins in combination with low-angle laser light scattering. Superior resolution of the oligomeric beta-crystallins. Bindels JG; de Man BM; Hoenders HJ J Chromatogr; 1982 Dec; 252():255-67. PubMed ID: 7182411 [TBL] [Abstract][Full Text] [Related]
11. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
12. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Srivastava OP Exp Eye Res; 1988 Oct; 47(4):525-43. PubMed ID: 3181333 [TBL] [Abstract][Full Text] [Related]
13. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
14. Crystallin distribution patterns in concentric layers from toad eye lenses. Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212 [TBL] [Abstract][Full Text] [Related]
15. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)]. Bours J; Hockwin O Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701 [TBL] [Abstract][Full Text] [Related]
16. Age-related variations in the distribution of crystallins within the bovine lens. Bessems GJ; De Man BM; Bours J; Hoenders HJ Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022 [TBL] [Abstract][Full Text] [Related]
17. Protein profiles of microsections of the fetal and adult human lens during development and ageing. Bours J; Wegener A; Hofmann D; Födisch HJ; Hockwin O Mech Ageing Dev; 1990 May; 54(1):13-27. PubMed ID: 2195251 [TBL] [Abstract][Full Text] [Related]
18. Biochemistry of the ageing rat lens. II. Isoelectric focusing of water-soluble crystallins. Bours J; Hockwin O Ophthalmic Res; 1983; 15(5):234-9. PubMed ID: 6646626 [TBL] [Abstract][Full Text] [Related]
19. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens. Wang L; Liu D; Liu P; Yu Y Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638 [TBL] [Abstract][Full Text] [Related]
20. Examination of a lens 'native' plasma membrane fraction and its associated crystallins. Fleschner CR; Cenedella RJ Curr Eye Res; 1992 Aug; 11(8):739-52. PubMed ID: 1424720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]