These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1045 related articles for article (PubMed ID: 9033404)
1. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Ionescu RM; Eftink MR Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment. Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513 [TBL] [Abstract][Full Text] [Related]
3. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
4. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Frye KJ; Perman CS; Royer CA Biochemistry; 1996 Aug; 35(31):10234-9. PubMed ID: 8756489 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212 [TBL] [Abstract][Full Text] [Related]
6. Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements. Ragona L; Fogolari F; Romagnoli S; Zetta L; Maubois JL; Molinari H J Mol Biol; 1999 Nov; 293(4):953-69. PubMed ID: 10543977 [TBL] [Abstract][Full Text] [Related]
7. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects. Godbole S; Dong A; Garbin K; Bowler BE Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325 [TBL] [Abstract][Full Text] [Related]
8. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein. Shao X; Hensley P; Matthews CR Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428 [TBL] [Abstract][Full Text] [Related]
9. Perchlorate-induced conformational transition of Staphylococcal nuclease: evidence for an equilibrium unfolding intermediate. Maity H; Eftink MR Arch Biochem Biophys; 2004 Nov; 431(1):119-23. PubMed ID: 15464733 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of tryptophan analogues into staphylococcal nuclease: stability toward thermal and guanidine-HCl induced unfolding. Wong CY; Eftink MR Biochemistry; 1998 Jun; 37(25):8947-53. PubMed ID: 9636036 [TBL] [Abstract][Full Text] [Related]
12. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations. Ikura T; Tsurupa GP; Kuwajima K Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370 [TBL] [Abstract][Full Text] [Related]
13. Volumetric and spectroscopic characterizations of the native and acid-induced denatured states of staphylococcal nuclease. Filfil R; Chalikian TV J Mol Biol; 2000 Jun; 299(3):827-42. PubMed ID: 10835287 [TBL] [Abstract][Full Text] [Related]
15. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants. Qureshi SH; Moza B; Yadav S; Ahmad F Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein. Barry JK; Matthews KS Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470 [TBL] [Abstract][Full Text] [Related]
17. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate. Maity H; Mossing MC; Eftink MR Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917 [TBL] [Abstract][Full Text] [Related]
19. NMR hydrogen exchange of the OB-fold protein LysN as a function of denaturant: the most conserved elements of structure are the most stable to unfolding. Alexandrescu AT; Jaravine VA; Dames SA; Lamour FP J Mol Biol; 1999 Jun; 289(4):1041-54. PubMed ID: 10369781 [TBL] [Abstract][Full Text] [Related]
20. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor. Gloss LM; Matthews CR Biochemistry; 1997 May; 36(19):5612-23. PubMed ID: 9153401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]