BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9034236)

  • 21. Variable oxygen and retinal VEGF levels: correlation with incidence and severity of pathology in a rat model of oxygen-induced retinopathy.
    Werdich XQ; McCollum GW; Rajaratnam VS; Penn JS
    Exp Eye Res; 2004 Nov; 79(5):623-30. PubMed ID: 15500821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computerized digital image analysis of retinal vessel density: application to normoxic and hyperoxic rearing of the newborn rat.
    Penn JS; Gay CA
    Exp Eye Res; 1992 Mar; 54(3):329-36. PubMed ID: 1521565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity of subnormal deltaPO2 for retinal neovascularization in experimental retinopathy of prematurity.
    Zhang W; Ito Y; Berlin E; Roberts R; Luan H; Berkowitz BA
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3551-5. PubMed ID: 12882806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen-induced retinopathy in the rat: possible contribution of peroxidation reactions.
    Penn JS
    Doc Ophthalmol; 1990 Mar; 74(3):179-86. PubMed ID: 2209375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of raised inspired carbon dioxide on developing rat retinal vasculature exposed to elevated oxygen.
    Holmes JM; Duffner LA; Kappil JC
    Curr Eye Res; 1994 Oct; 13(10):779-82. PubMed ID: 7842726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avastin treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity.
    Rabinowitz R; Priel A; Rosner M; Pri-Chen S; Spierer A
    Curr Eye Res; 2012 Jul; 37(7):624-9. PubMed ID: 22578253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significant reduction of the panretinal oxygenation response after 28% supplemental oxygen recovery in experimental ROP.
    Berkowitz BA; Zhang W
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1925-31. PubMed ID: 10845618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Relationship between expression of angiopoietin-2 and retinal vascular development in hyperoxic rats].
    Liang WY; Jiang L
    Zhonghua Er Ke Za Zhi; 2009 Mar; 47(3):204-8. PubMed ID: 19573435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity.
    Hong HK; Lee HJ; Ko JH; Park JH; Park JY; Choi CW; Yoon CH; Ahn SJ; Park KH; Woo SJ; Oh JY
    J Neuroinflammation; 2014 May; 11():87. PubMed ID: 24886524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel model of retinopathy of prematurity simulating preterm oxygen variability in the rat.
    Cunningham S; McColm JR; Wade J; Sedowofia K; McIntosh N; Fleck B
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4275-80. PubMed ID: 11095626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Herbimycin A inhibits angiogenic activity in endothelial cells and reduces neovascularization in a rat model of retinopathy of prematurity.
    McCollum GW; Rajaratnam VS; Bullard LE; Yang R; Penn JS
    Exp Eye Res; 2004 May; 78(5):987-95. PubMed ID: 15051479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-thyroid methimazole in an acidosis-induced retinopathy rat model of retinopathy of prematurity.
    Mookadam M; Leske DA; Fautsch MP; Lanier WL; Holmes JM
    Mol Vis; 2005 Nov; 11():909-15. PubMed ID: 16280976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomolecular effects of JB1 (an IGF-I peptide analog) in a rat model of oxygen-induced retinopathy.
    Brock RS; Gebrekristos BH; Kuniyoshi KM; Modanlou HD; Falcao MC; Beharry KD
    Pediatr Res; 2011 Feb; 69(2):135-41. PubMed ID: 21057375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity.
    Zhang W; Ito Y; Berlin E; Roberts R; Berkowitz BA
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3119-23. PubMed ID: 12824260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen-induced retinopathy in the mouse.
    Smith LE; Wesolowski E; McLellan A; Kostyk SK; D'Amato R; Sullivan R; D'Amore PA
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):101-11. PubMed ID: 7507904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen-induced retinopathy in the newborn rat: morphological and immunohistological findings in animals treated with topical timolol maleate.
    Ricci B; Ricci F; Maggiano N
    Ophthalmologica; 2000; 214(2):136-9. PubMed ID: 10720919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dexamethasone and critical effect of timing on retinopathy.
    Yossuck P; Yan Y; Tadesse M; Higgins RD
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3095-9. PubMed ID: 10967069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescein angiography of the newborn rat. Implications in oxygen-induced retinopathy.
    Larrazabal LI; Penn JS
    Invest Ophthalmol Vis Sci; 1990 May; 31(5):810-8. PubMed ID: 2335449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of Intravitreal injection of 2-Methoxyestradiol in regression of neovascularization of a retinopathy of prematurity rat model.
    Said AM; Zaki RG; Salah Eldin RA; Nasr M; Azab SS; Elzankalony YA
    BMC Ophthalmol; 2017 Apr; 17(1):38. PubMed ID: 28376733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual cycle modulation in neurovascular retinopathy.
    Akula JD; Hansen RM; Tzekov R; Favazza TL; Vyhovsky TC; Benador IY; Mocko JA; McGee D; Kubota R; Fulton AB
    Exp Eye Res; 2010 Aug; 91(2):153-61. PubMed ID: 20430026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.