These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9034896)

  • 21. Spinocerebellar mossy fiber terminal topography in the NR2C/PKC gamma double mutant cerebellum.
    Ji Z; Ebralidze A; Tonegawa S; Vogel MW
    Brain Res Dev Brain Res; 1996 Nov; 97(1):138-42. PubMed ID: 8946062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum.
    Berretta S; Perciavalle V; Poppele RE
    J Comp Neurol; 1991 Mar; 305(2):273-81. PubMed ID: 1709180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum.
    Armstrong CL; Chung SH; Armstrong JN; Hochgeschwender U; Jeong YG; Hawkes R
    J Comp Neurol; 2009 Dec; 517(4):524-38. PubMed ID: 19795496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones.
    Pijpers A; Apps R; Pardoe J; Voogd J; Ruigrok TJ
    J Neurosci; 2006 Nov; 26(46):12067-80. PubMed ID: 17108180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA; Christakos S; Catalano SM
    J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mossy Fibers Terminate Directly Within Purkinje Cell Zones During Mouse Development.
    Sillitoe RV
    Cerebellum; 2016 Feb; 15(1):14-17. PubMed ID: 26255945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dense projection of Stilling's nucleus spinocerebellar axons that convey tail proprioception to the midline area in lobule VIII of the mouse cerebellum.
    Luo Y; Onozato T; Wu X; Sasamura K; Sakimura K; Sugihara I
    Brain Struct Funct; 2020 Mar; 225(2):621-638. PubMed ID: 31955293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Yaginuma H
    J Comp Neurol; 1989 Oct; 288(1):19-38. PubMed ID: 2477413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presence of calbindin D28K and GAD67 mRNAs in both orthotopic and ectopic Purkinje cells of staggerer mice suggests that staggerer acts after the onset of cytodifferentiation.
    Frantz GD; Wuenschell CW; Messer A; Tobin AJ
    J Neurosci Res; 1996 May; 44(3):255-62. PubMed ID: 8723764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Yaginuma H; Matsushita M
    J Comp Neurol; 1989 Mar; 281(2):298-319. PubMed ID: 2708577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.
    Barmack NH; Yakhnitsa V
    Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe.
    Alisky JM; Tolbert DL
    Neuroscience; 1997 Sep; 80(2):373-88. PubMed ID: 9284341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum.
    Barmack NH; Yakhnitsa V
    Neuroscientist; 2011 Apr; 17(2):221-36. PubMed ID: 21362689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular distribution of gangliosides in the developing mouse cerebellum: analysis using the staggerer mutant.
    Seyfried TN; Bernard DJ; Yu RK
    J Neurochem; 1984 Oct; 43(4):1152-62. PubMed ID: 6470710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation and maturation of parallel fiber-Purkinje cell synapses in the Staggerer cerebellum ex vivo.
    Janmaat S; Frédéric F; Sjollema K; Luiten P; Mariani J; van der Want J
    J Comp Neurol; 2009 Feb; 512(4):467-77. PubMed ID: 19025990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The olivocerebellar projection in normal (+/+), heterozygous weaver (wv/+), and homozygous weaver (wv/wv) mutant mice: comparison of terminal pattern and topographic organization.
    Blatt GJ; Eisenman LM
    Exp Brain Res; 1993; 95(2):187-201. PubMed ID: 7693502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallin, a cerebellar granule cell protein the expression of which is developmentally regulated by Purkinje cells: evidence from mutant mice.
    Smith AM; Mullen RJ
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):79-89. PubMed ID: 9466710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the spinocerebellar system in the postnatal rat.
    Arsénio Nunes ML; Sotelo C
    J Comp Neurol; 1985 Jul; 237(3):291-306. PubMed ID: 3840179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras.
    Sonmez E; Herrup K
    Brain Res; 1984 Feb; 314(2):271-83. PubMed ID: 6704753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.