BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9035104)

  • 1. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies.
    Lee SW; Sullenger BA
    Nat Biotechnol; 1997 Jan; 15(1):41-5. PubMed ID: 9035104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of RNA aptamer activity against myasthenic autoantibodies by extended sequence selection.
    Hwang B; Lee SW
    Biochem Biophys Res Commun; 2002 Jan; 290(2):656-62. PubMed ID: 11785949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci.
    Protopapadakis E; Kokla A; Tzartos SJ; Mamalaki A
    Eur J Immunol; 2005 Jun; 35(6):1960-8. PubMed ID: 15915538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial expression of a single-chain Fv fragment which efficiently protects the acetylcholine receptor against antigenic modulation caused by myasthenic antibodies.
    Mamalaki A; Trakas N; Tzartos SJ
    Eur J Immunol; 1993 Aug; 23(8):1839-45. PubMed ID: 8344344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and functional characterization of anti-acetylcholine receptor subunit-specific autoantibodies from myasthenic patients: receptor loss in cell culture.
    Sideris S; Lagoumintzis G; Kordas G; Kostelidou K; Sotiriadis A; Poulas K; Tzartos SJ
    J Neuroimmunol; 2007 Sep; 189(1-2):111-7. PubMed ID: 17617475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid, fluorescence-based assay for detecting antigenic modulation of the acetylcholine receptor on human cell lines.
    Keefe D; Hess D; Bosco J; Tzartos S; Powell J; Lamsa J; Josiah S
    Cytometry B Clin Cytom; 2009 May; 76(3):206-12. PubMed ID: 18825779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of human anti-acetylcholine receptor monoclonal autoantibodies from the peripheral blood of a myasthenia gravis patient using combinatorial libraries.
    Rey E; Zeidel M; Rhine C; Tami J; Krolick K; Fischbach M; Sanz I
    Clin Immunol; 2000 Sep; 96(3):269-79. PubMed ID: 10964546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 17-Mer self-peptide of acetylcholine receptor binds to B cell MHC class II, activates helper T cells, and stimulates autoantibody production and electrophysiologic signs of myasthenia gravis.
    Yoshikawa H; Lambert EH; Walser-Kuntz DR; Yasukawa Y; McCormick DJ; Lennon VA
    J Immunol; 1997 Aug; 159(3):1570-7. PubMed ID: 9233656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and structural features of RNA aptamer against myasthenic autoantibodies.
    Cho JS; Lee SW
    Oligonucleotides; 2009 Sep; 19(3):273-80. PubMed ID: 19642914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgG from "seronegative" myasthenia gravis patients binds to a muscle cell line, TE671, but not to human acetylcholine receptor.
    Blaes F; Beeson D; Plested P; Lang B; Vincent A
    Ann Neurol; 2000 Apr; 47(4):504-10. PubMed ID: 10762162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation.
    Drachman DB; Angus CW; Adams RN; Michelson JD; Hoffman GJ
    N Engl J Med; 1978 May; 298(20):1116-22. PubMed ID: 643030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of myasthenia gravis antibodies to different acetylcholine receptor preparations.
    Zielinski A; Brenner T; Abramsky O
    Isr J Med Sci; 1982 Apr; 18(4):483-6. PubMed ID: 7085248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Antibodies in myasthenia gravis].
    Eymard B
    Rev Neurol (Paris); 2009 Feb; 165(2):137-43. PubMed ID: 19162288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of passively transferred experimental autoimmune myasthenia gravis by an in vitro selected RNA aptamer.
    Hwang B; Han K; Lee SW
    FEBS Lett; 2003 Jul; 548(1-3):85-9. PubMed ID: 12885412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myasthenia induced by monoclonal anti-acetylcholine receptor antibodies: clinical and electrophysiological aspects.
    Burres SA; Crayton JW; Gomez CM; Richman DP
    Ann Neurol; 1981 Jun; 9(6):563-8. PubMed ID: 6167199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis.
    Drachman DB; Adams RN; Josifek LF; Self SG
    N Engl J Med; 1982 Sep; 307(13):769-75. PubMed ID: 7110241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquired canine myasthenia gravis: immunocytochemical localization of immune complexes at neuromuscular junctions.
    Pflugfelder CM; Cardinet GH; Lutz H; Holliday TA; Hansen RJ
    Muscle Nerve; 1981; 4(4):289-95. PubMed ID: 7019698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of anti-acetylcholine receptor antibodies in Praomys (Mastomys) natalensis.
    Vincent A; Solleveld HA
    Clin Exp Immunol; 1981 Jan; 43(1):94-8. PubMed ID: 7249398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myasthenia gravis experimentally induced with muscle-specific kinase.
    Shigemoto K; Kubo S; Jie C; Hato N; Abe Y; Ueda N; Kobayashi N; Kameda K; Mominoki K; Miyazawa A; Ishigami A; Matsuda S; Maruyama N
    Ann N Y Acad Sci; 2008; 1132():93-8. PubMed ID: 18096854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.