These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9035374)

  • 1. Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators.
    Janshoff A; Wegener J; Sieber M; Galla HJ
    Eur Biophys J; 1996; 25(2):93-103. PubMed ID: 9035374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.
    Martin SJ; Bandey HL; Cernosek RW; Hillman AR; Brown MJ
    Anal Chem; 2000 Jan; 72(1):141-9. PubMed ID: 10655646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators.
    Bund A; Schwitzgebel G
    Anal Chem; 1998 Jul; 70(13):2584-8. PubMed ID: 21644778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.
    Saluja A; Kalonia DS
    AAPS PharmSciTech; 2004 Aug; 5(3):e47. PubMed ID: 15760080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing.
    Lo CM; Keese CR; Giaever I
    Biophys J; 1995 Dec; 69(6):2800-7. PubMed ID: 8599686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces.
    Wegener J; Sieber M; Galla HJ
    J Biochem Biophys Methods; 1996 Jul; 32(3):151-70. PubMed ID: 8844323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz crystal microbalance studies of the contact between soft, viscoelastic solids.
    Kunze M; Shull KR; Johannsmann D
    Langmuir; 2006 Jan; 22(1):169-73. PubMed ID: 16378416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of layer-by-layer self-assembled viscoelastic films on thickness-shear mode resonator surfaces.
    Calvo EJ; Forzani ES; Otero M
    Anal Chem; 2002 Jul; 74(14):3281-9. PubMed ID: 12139030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Electrode Models for Impedance Analysis of Epithelial and Endothelial Monolayers Cultured on Microelectrodes.
    Chiu WC; Chen WL; Lai YT; Hung YH; Lo CM
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An instrument for simultaneous EQCM impedance and SECM measurements.
    Gollas B; Bartlett PN; Denuault G
    Anal Chem; 2000 Jan; 72(2):349-56. PubMed ID: 10658330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.
    Kiełczyński P; Pajewski W; Szalewski M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):230-6. PubMed ID: 12699156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Glycerol-Based Suspensions on the Characteristics of Resonators Excited by a Longitudinal Electric Field.
    Semyonov A; Zaitsev B; Teplykh A; Borodina I
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms.
    Castro P; Elvira L; Maestre JR; Montero de Espinosa F
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically measuring viscoelastic parameters of adherent cell layers under controlled magnetic forces.
    Lo CM; Ferrier J
    Eur Biophys J; 1999; 28(2):112-8. PubMed ID: 10028236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance characterization of a piezoelectric immunosensor. Part I: antibody coating and buffer solution.
    Kim GH; Rand AG; Letcher SV
    Biosens Bioelectron; 2003 Jan; 18(1):83-9. PubMed ID: 12445448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Electrical and Mechanical Properties of Liquids Using a Resonator with a Longitudinal Electric Field.
    Semyonov A; Zaitsev B; Teplykh A; Borodina I
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution to the electromechanical and nonlinear properties of GaPO4 crystals.
    Nosek J; Zelenka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):571-6. PubMed ID: 12839168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended Butterworth-Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media.
    Arnau A; Jiménez Y; Sogorb T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1367-82. PubMed ID: 11570762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.