These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9037111)
61. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
62. Transfer and expression of PCB-degradative genes into heavy metal resistant Alcaligenes eutrophus strains. Springael D; Diels L; Mergeay M Biodegradation; 1994 Dec; 5(3-4):343-57. PubMed ID: 7765842 [TBL] [Abstract][Full Text] [Related]
64. Metabolic characterization and genes for the conversion of biphenyl in Dyella ginsengisoli LA-4. Li A; Qu YY; Pi WQ; Zhou JT; Gai ZH; Xu P Biotechnol Bioeng; 2012 Feb; 109(2):609-13. PubMed ID: 21928338 [TBL] [Abstract][Full Text] [Related]
65. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Hofer B; Backhaus S; Timmis KN Gene; 1994 Jun; 144(1):9-16. PubMed ID: 8026764 [TBL] [Abstract][Full Text] [Related]
66. Nitrate and nitrite-mediated transcription antitermination control of nasF (nitrate assimilation) operon expression in Klebsiella pheumoniae M5al. Lin JT; Stewart V J Mol Biol; 1996 Mar; 256(3):423-35. PubMed ID: 8604128 [TBL] [Abstract][Full Text] [Related]
67. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Dasgupta N; Wolfgang MC; Goodman AL; Arora SK; Jyot J; Lory S; Ramphal R Mol Microbiol; 2003 Nov; 50(3):809-24. PubMed ID: 14617143 [TBL] [Abstract][Full Text] [Related]
68. Biochemistry and genetics of PCB metabolism. Furukawa K; Kimura N Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):21-3. PubMed ID: 8565902 [TBL] [Abstract][Full Text] [Related]
69. Physical and functional analysis of the prokaryotic enhancer of the sigma 54-promoters of the TOL plasmid of Pseudomonas putida. Pérez-Martín J; de Lorenzo V J Mol Biol; 1996 May; 258(4):562-74. PubMed ID: 8636992 [TBL] [Abstract][Full Text] [Related]
70. Conjugal transfer of polychlorinated biphenyl/biphenyl degradation genes in Acidovorax sp. strain KKS102, which are located on an integrative and conjugative element. Ohtsubo Y; Ishibashi Y; Naganawa H; Hirokawa S; Atobe S; Nagata Y; Tsuda M J Bacteriol; 2012 Aug; 194(16):4237-48. PubMed ID: 22685277 [TBL] [Abstract][Full Text] [Related]
71. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. Furukawa K; Miyazaki T J Bacteriol; 1986 May; 166(2):392-8. PubMed ID: 3009395 [TBL] [Abstract][Full Text] [Related]
72. A carbon starvation survival gene of Pseudomonas putida is regulated by sigma 54. Kim Y; Watrud LS; Matin A J Bacteriol; 1995 Apr; 177(7):1850-9. PubMed ID: 7896711 [TBL] [Abstract][Full Text] [Related]
73. Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Wang Y; Garnon J; Labbé D; Bergeron H; Lau PC Gene; 1995 Oct; 164(1):117-22. PubMed ID: 7590299 [TBL] [Abstract][Full Text] [Related]
74. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. Siddiqui RA; Benthin K; Schlegel HG J Bacteriol; 1989 Sep; 171(9):5071-8. PubMed ID: 2549012 [TBL] [Abstract][Full Text] [Related]
75. Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Windhövel U; Bowien B Mol Microbiol; 1991 Nov; 5(11):2695-705. PubMed ID: 1779759 [TBL] [Abstract][Full Text] [Related]
76. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181 [TBL] [Abstract][Full Text] [Related]
78. Multiple Polychlorinated Biphenyl Transformation Systems in the Gram-Positive Bacterium Rhodococcus sp. Strain RHA1. Seto M; Masai E; Ida M; Hatta T; Kimbara K; Fukuda M; Yano K Appl Environ Microbiol; 1995 Dec; 61(12):4510-3. PubMed ID: 16535201 [TBL] [Abstract][Full Text] [Related]
79. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Hoffmann D; Kleinsteuber S; Müller RH; Babel W Microbiology (Reading); 2003 Sep; 149(Pt 9):2545-2556. PubMed ID: 12949179 [TBL] [Abstract][Full Text] [Related]
80. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Fujihara H; Hirose J; Suenaga H Front Microbiol; 2023; 14():1168246. PubMed ID: 37350784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]