BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9037417)

  • 1. Brainstem-mediated locomotion and myoclonic jerks. I. Neural substrates.
    Lai YY; Siegel JM
    Brain Res; 1997 Jan; 745(1-2):257-64. PubMed ID: 9037417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem-mediated locomotion and myoclonic jerks. II Pharmacological effects.
    Lai YY; Siegel JM
    Brain Res; 1997 Jan; 745(1-2):265-70. PubMed ID: 9037418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep.
    Lai YY; Hsieh KC; Nguyen D; Peever J; Siegel JM
    Neuroscience; 2008 Jun; 154(2):431-43. PubMed ID: 18487021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxic N-methyl-D-aspartate lesion of the ventral midbrain and mesopontine junction alters sleep-wake organization.
    Lai YY; Shalita T; Hajnik T; Wu JP; Kuo JS; Chia LG; Siegel JM
    Neuroscience; 1999 May; 90(2):469-83. PubMed ID: 10215152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spontaneous rhythmic discharges in the motor nerves of posterior limbs of decerebrate immobilized cats].
    Baev KV
    Neirofiziologiia; 1977; 9(6):622-5. PubMed ID: 593460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The serotonin hypothesis of myoclonus from the perspective of neuronal rhythmicity.
    Welsh JP; Placantonakis DG; Warsetsky SI; Marquez RG; Bernstein L; Aicher SA
    Adv Neurol; 2002; 89():307-29. PubMed ID: 11968457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction.
    Takakusaki K; Habaguchi T; Ohtinata-Sugimoto J; Saitoh K; Sakamoto T
    Neuroscience; 2003; 119(1):293-308. PubMed ID: 12763089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimyoclonic effect of MK-801: a possible role for NMDA receptors in developmental myoclonus of the neonatal rat.
    Pranzatelli MR
    Clin Neuropharmacol; 1990 Aug; 13(4):329-38. PubMed ID: 2145066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New locomotor areas of the brain stem of the cat].
    Baev KV; Berezovskiĭ VK; Esipenko VB
    Neirofiziologiia; 1986; 18(3):416-9. PubMed ID: 3736715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats.
    Yamaguchi T
    Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The pathways necessary for eliciting walking by stimulation of the locomotor area of the brain stem].
    Kazennikov OV; Budakova NN; Shik ML
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jan; 76(1):26-32. PubMed ID: 2159909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation.
    Lai YY; Kodama T; Schenkel E; Siegel JM
    J Neurophysiol; 2010 Oct; 104(4):2024-33. PubMed ID: 20668280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats.
    Giroux N; Chau C; Barbeau H; Reader TA; Rossignol S
    J Neurophysiol; 2003 Aug; 90(2):1027-45. PubMed ID: 12904502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New locomotor regions of the brainstem revealed by means of electrical stimulation.
    Beresovskii VK; Bayev KV
    Neuroscience; 1988 Sep; 26(3):863-9. PubMed ID: 3200432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of localized intraspinal injections of a noradrenergic blocker on locomotion of high decerebrate cats.
    Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2008 Aug; 100(2):907-21. PubMed ID: 18550723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [2 types of neuronal reactions of the medulla oblongata to microstimulation of the locomotor and inhibitory points of the brain stem].
    Selionov VA; Shik ML
    Neirofiziologiia; 1990; 22(2):257-66. PubMed ID: 2377255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site.
    Hendricks JC; Morrison AR; Mann GL
    Brain Res; 1982 May; 239(1):81-105. PubMed ID: 7093693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats.
    Mallick BN; Thankachan S; Islam F
    Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.